OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
FORMULA
Conjecture: G.f.: (2x^3+x^2-4x+5)/(-x^4+2x^2-3x+1). - Ralf Stephan, May 12 2004
Conjecture: a(0)=5, a(1)=11, a(2)=24, a(3)=52, a(n)=3*a(n-1)-2*a(n-2)+a(n-4). - Harvey P. Dale, May 19 2015
MATHEMATICA
nxt[{a_, b_}]:={b, Round[b^2/a]}; Transpose[NestList[nxt, {5, 11}, 30]][[1]] (* Harvey P. Dale, May 19 2015 *)
RecurrenceTable[{a[n] == Ceiling[a[n - 1]^2/a[n - 2] - 1/2], a[0] == 5, a[1] == 11}, a, {n, 0, 27}] (* Michael De Vlieger, Aug 08 2016 *)
PROG
(PARI) pisotP(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));
a
}
pisotP(50, 5, 11) \\ Colin Barker, Aug 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved