[go: up one dir, main page]

login
A021006
Pisot sequence P(4,11), a(0)=4, a(1)=11, a(n+1) is the nearest integer to a(n)^2/a(n-1). Evidently satisfies a(n) = 2*a(n-1)+2*a(n-2).
12
4, 11, 30, 82, 224, 612, 1672, 4568, 12480, 34096, 93152, 254496, 695296, 1899584, 5189760, 14178688, 38736896, 105831168, 289136128, 789934592, 2158141440, 5896152064, 16108587008, 44009478144, 120236130304
OFFSET
0,1
COMMENTS
Pisano period lengths: 1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1,144, 9,180, 24,,.. - R. J. Mathar, Aug 10 2012
Inverse binomial transform of A001353 without its first two terms, and downshift. - Richard R. Forberg, Aug 24 2013
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Tanya Khovanova, Recursive Sequences
FORMULA
G.f.: (4+3*x)/(1-2*x-2*x^2). [Philippe Deléham, Nov 19 2008]
MATHEMATICA
LinearRecurrence[{2, 2}, {4, 11}, 30] (* Harvey P. Dale, Oct 25 2011 *)
PROG
(Magma) I:=[4, 11]; [n le 2 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 26 2011
CROSSREFS
Sequence in context: A341104 A019495 A019496 * A078141 A090327 A183118
KEYWORD
nonn,easy
AUTHOR
STATUS
approved