[go: up one dir, main page]

login
A016655
Decimal expansion of log(32) = 5*log(2).
18
3, 4, 6, 5, 7, 3, 5, 9, 0, 2, 7, 9, 9, 7, 2, 6, 5, 4, 7, 0, 8, 6, 1, 6, 0, 6, 0, 7, 2, 9, 0, 8, 8, 2, 8, 4, 0, 3, 7, 7, 5, 0, 0, 6, 7, 1, 8, 0, 1, 2, 7, 6, 2, 7, 0, 6, 0, 3, 4, 0, 0, 0, 4, 7, 4, 6, 6, 9, 6, 8, 1, 0, 9, 8, 4, 8, 4, 7, 3, 5, 7, 8, 0, 2, 9, 3, 1, 6, 6, 3, 4, 9, 8, 2, 0, 9, 3, 4, 3
OFFSET
1,1
COMMENTS
The function exp(x) has its maximum curvature where x = -(1/10)*5*log(2) = -log(2)/2 = 0.34657... - Dimitri Papadopoulos, Oct 27 2022
This maximum curvature occurs at the point with coordinates (x_M = -log(2)/2 = -(this constant)/10; y_M = sqrt(2)/2 = A010503) and is equal to 2*sqrt(3)/9 = A212886. - Bernard Schott, Dec 23 2022
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
O. Espinosa, V. H. Moll, On some integrals involving the Hurwitz Zeta function: Part 1, Raman. J. 6 (2002) 159-188, eq. (5.7)
R. S. Melham and A. G. Shannon, Inverse Trigonometric Hyperbolic Summation Formulas Involving Generalized Fibonacci Numbers, The Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 32-40.
Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), chap 7.1
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021.
FORMULA
log(2)/2 = (1 - 1/2 - 1/4) + (1/3 - 1/6 - 1/8) + (1/5 - 1/10 - 1/12) + ... [Jolley, Summation of Series, Dover (1961) eq (73)]
Equals 10*log(2)/2 = 5*log(2) = 5*A002162, so 10*(1/2 - 1/4 + 1/6 - 1/8 + 1/10 - ... + (-1)^(k+1)/(2*k) + ...) = log(32). - Eric Desbiaux, Nov 26 2008
-log(2)/2 = lim_{n->oo} ((Sum_{k=2..n} arctanh(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals log(sqrt(2)) with offset 0. - Michel Marcus, Feb 19 2017
Equals (5/4)*Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
From Amiram Eldar, Jun 29 2020: (Start)
log(2)/2 = arctanh(1/3) = arcsinh(1/sqrt(8)).
log(2)/2 = Integral_{x=0..Pi/4} tan(x) dx.
log(2)/2 = Sum_{k>=0} (-1)^k/(2*k+2).
log(2)/2 = Sum_{k>=1} 1/A060851(k). (End)
log(2)/2 = Sum_{k>=1} (-1)^(k+1) * arctanh(Lucas(2*k+3)/Fibonacci(2*k+3)^2) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
Equals 10 * Integral_{1..oo} dx/(x*(1+x^2)). [Nahin] - R. J. Mathar, May 22 2024
Equals -10*Integral_{q=0..1} q*log(sin(Pi*q))dq. [Espinosa] - R. J. Mathar, Aug 13 2024
log(2)/2 = Sum_{k>=2} (-1)^(k) * arccoth(k). - Antonio Graciá Llorente, Sep 16 2024
EXAMPLE
3.465735902799726547086160607290882840377500671801276270603400047466968...
MATHEMATICA
RealDigits[5 N [Log[2], 100]] [[1]] (* Vincenzo Librandi, Jan 02 2016 *)
PROG
(PARI) log(32) \\ Charles R Greathouse IV, Jan 24 2012
(Magma) [5*Log(2)]; // Vincenzo Librandi, Jan 02 2016
CROSSREFS
Cf. A000045, A000032, A060851, A195909, A195913, A195697, A016460 (continued fraction).
Sequence in context: A037189 A083342 A372784 * A057757 A336717 A332361
KEYWORD
nonn,cons
STATUS
approved