[go: up one dir, main page]

login
A015327
Gaussian binomial coefficient [ n,6 ] for q = -5.
2
1, 13021, 211929796, 3285123767796, 51412313316921546, 803060432690378496546, 12548622321219854387027796, 196069714237340352552410777796, 3063597127265150338968694860387171
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (13021, 42383355, -26287771375, -3285971421875, 82779990234375, 397369384765625, -476837158203125).
FORMULA
G.f.: x^6 /((x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(125*x+1)*(15625*x-1)*(3125*x+1)). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 6, -5], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -5) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A138762 A139777 A031633 * A210016 A079230 A262659
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Dec 11 1999
STATUS
approved