[go: up one dir, main page]

login
A015330
Gaussian binomial coefficient [ n,6 ] for q = -7.
3
1, 102943, 12363454300, 1450319733570100, 170699761008128301202, 20081461365765141084602686, 2362583929682268848603506007900, 277955299234477922983349122651265300
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (102943, 1766193051, -4228553683893, -1450393913575299, 71272260266184957,488728224518062249, -558545864083284007).
FORMULA
G.f.: x^6 / ( (x-1)*(117649*x-1)*(16807*x+1)*(49*x-1)*(343*x+1)*(7*x+1)*(2401*x-1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 6, -7], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -7) for n in range(6, 14)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A321149 A323604 A014884 * A250704 A250941 A237572
KEYWORD
nonn,easy
AUTHOR
Olivier GĂ©rard, Dec 11 1999
STATUS
approved