[go: up one dir, main page]

login
A014376
Number of trivalent connected simple graphs with 2n nodes and girth at least 8.
18
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 13, 155, 4337, 266362, 20807688
OFFSET
0,19
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 647.
M. Meringer, Fast Generation of Regular Graphs and Construction of Cages</a>, Journal of Graph Theory, 30 (1999), 137-146 doi 10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G [From Jason Kimberley, Jan 29 2011]
CROSSREFS
Contribution from Jason Kimberley, May 18 2010 and Jan 29 2011: (Start)
Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: A185118 (k=2), this sequence (k=3).
Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), this sequence (g=8).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)
Sequence in context: A339025 A317074 A230036 * A224990 A065622 A246418
KEYWORD
nonn,more,hard
AUTHOR
EXTENSIONS
Terms a(21), a(22), and a(23) found by running Meringer's GENREG for 0.15, 5.0, and 176.2 processor days, respectively, at U. Ncle. by Jason Kimberley, May 18 2010
STATUS
approved