OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..999 (first 101 terms from T. D. Noe)
M. Aguiar and J.-L. Loday, Quadri-algebras, J. Pure Appl. Algebra, 191 (2004), 205-221.
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From N. J. A. Sloane, Sep 21 2012
F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358 (column sums in Table 2).
Michael Drmota, Anna de Mier, Marc Noy, Extremal statistics on non-crossing configurations, Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (3). - N. J. A. Sloane, May 18 2014
Guillermo Esteban, Clemens Huemer, Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, On the congruences of some combinatorial numbers, Stud. Appl. Math. vol. 116 (2006) pp. 135-144.
P. Flajolet and M. Noy, Analytic Combinatorics of Non-crossing Configurations
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 486.
Loïc Foissy, Free quadri-algebras and dual quadri-algebras, arXiv:1504.06056 [math.CO], 2015.
I. M. Gessel, A short proof of the Deutsch-Sagan congruence for connected non crossing graphs, arXiv preprint arXiv:1403.7656 [math.CO], 2014.
Marco Kuhlmann, Tabulation of Noncrossing Acyclic Digraphs, arXiv:1504.04993 [cs.DS], 2015.
M. Kuhlmann, P. Jonsson, Parsing to Noncrossing Dependency Graphs, Transactions of the Association for Computational Linguistics, vol. 3, pp. 559-570, 2015.
Sara Madariaga, Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras, arXiv:1304.5184 [math.RA], 2013.
B. Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, arXiv:math/0609002 [math.QA], 2006-2007; J. Reine Angew. Math. 620 (2008), 105-164.
Gus Wiseman, The a(5) = 156 connected non-crossing graphs.
Gus Wiseman, Constructive Mathematica program for A007297.
Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
FORMULA
Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - Vladimir Kruchinin, Feb 08 2013
G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - Emeric Deutsch, Dec 02 2002
a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - Paul Barry, May 11 2005
a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - Paul Barry, Sep 27 2005
a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - Vladimir Reshetnikov, Oct 25 2015
EXAMPLE
G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
MAPLE
A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
MATHEMATICA
CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))), n+1)) /* Ralf Stephan */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Better description from Philippe Flajolet, Apr 20 2000
More terms from James A. Sellers, Aug 21 2000
Definition revised and initial a(1)=1 added by N. J. A. Sloane, Nov 05 2015 at the suggestion of _Axel Boldt_. Some of the formulas may now need to be adjusted slightly.
STATUS
approved