OFFSET
1,3
COMMENTS
Number of rooted identity trees with n nodes and edges not attached to root are 2-colored or oriented. - Christian G. Bower, Dec 15 1999
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..400
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 430
R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
N. J. A. Sloane, Transforms
FORMULA
a(n+1) is Weigh transform of A005753. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.2490324912281705791649522..., c = 0.05927840588836202377824646... . - Vaclav Kotesovec, Aug 25 2014
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x - A(x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) - A(x^4)^2/(4*x^4) + ... ). - Ilya Gutkovskiy, May 26 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(2*b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> g((n-1)$2):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 01 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1]; Table[a[n], {n, 1, 30}] // FullSimplify (* Jean-François Alcover, Dec 02 2013, translated from Alois P. Heinz's Maple program *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Dec 15 1999
STATUS
approved