[go: up one dir, main page]

login
A102755
Number of asymmetric (or identity) oriented trees with n nodes.
4
1, 1, 1, 4, 10, 37, 135, 522, 2060, 8430, 35115, 149286, 644456, 2821835, 12503878, 56001856, 253174451, 1154179790, 5301178673, 24513058220, 114042743290, 533510321377, 2508491383101, 11849321038092, 56211286929146, 267707017974770, 1279602152054934
OFFSET
1,4
LINKS
FORMULA
G.f.: B(x)-B(x)^2, where B(x) is g.f. for A005753.
a(n) ~ c * d^n / n^(5/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.17807103914078424643862998... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(2*b(i-1$2), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n-1$2)-add(b(j-1$2)*b(n-j-1$2), j=1..n-1):
seq(a(n), n=1..35); # Alois P. Heinz, Aug 01 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*b[i-1, i-1], j]*b[n - i*j, i-1], {j, 0, n/i}]]] // FullSimplify; a[n_] := b[n-1, n-1] - Sum[b[j-1, j-1]*b[n-j-1, n-j-1], {j, 1, n-1}]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A005753 = number of asymmetric (or identity) rooted oriented trees with n nodes.
Cf. A246312.
Sequence in context: A149188 A149189 A149190 * A197551 A046562 A240382
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 10 2005
STATUS
approved