[go: up one dir, main page]

login
A005640
Number of phylogenetic trees with n labels.
(Formerly M1896)
8
1, 1, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416
OFFSET
0,3
COMMENTS
Each node of the tree is a subset of the labeled set {1,...,n}. If the subset node is empty, it must have degree at least 3.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.
LINKS
L. R. Foulds and R. W. Robinson, Determining the asymptotic number of phylogenetic trees, pp. 110-126 of Combinatorial Mathematics VII (Newcastle, August 1979), ed. R. W. Robinson, G. W. Southern and W. D. Wallis. Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
J. P. Hayes, Enumeration of fanout-free Boolean functions, J. ACM, 23 (1976), 700-709.
K. L. Kodandapani and S. C. Seth, On combinational networks with restricted fan-out, IEEE Trans. Computers, 27 (1978), 309-318. (Annotated scanned copy)
N. J. A. Sloane, Transforms
FORMULA
STIRLING transform of A005263.
E.g.f.: 1+B(x)-B(x)^2 where B(x) is e.g.f. of A005172.
For n >= 2, a(n) = 2^n*A006351(n) = 2^(n+1)*A000311(n).
MATHEMATICA
a[n_ /; n > 2] := 2^(n-1)*(n-2)!*Sum[ Binomial[n+k-2, n-2]*Sum[ (-1)^j*Binomial[k, j]*Sum[ ((-1)^l*2^(j-l)*Binomial[j, l]*(j-l)!*StirlingS1[n+j-l-2, j-l])/(n+j-l-2)!, {l, 0, j}], {j, 1, k}], {k, 1, n-2}]; a[0] = a[1] = 1; a[2] = 2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 10 2012, after Vladimir Kruchinin *)
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms, formula and comment from Christian G. Bower, Nov 15 1999
STATUS
approved