OFFSET
1,2
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..27 from R. W. Robinson)
R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978. (Annotated scanned copy)
Sridharan, M. R., Self-complementary and self-converse oriented graphs , Nederl. Akad. Wetensch. Proc. Ser. A 73=Indag. Math. 32 1970 441-447. [Annotated scanned copy] See page 446.
MATHEMATICA
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[If[Mod[v[[i]] v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, 2 Quotient[v[[i]] - 2, 4] + 1, 0], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 18] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, (v[i]-2)\4*2+1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved