[go: up one dir, main page]

login
A005501
Number of unrooted triangulations of a pentagon with n internal nodes.
(Formerly M3488)
5
1, 4, 14, 69, 396, 2503, 16905, 119571, 874771, 6567181, 50329363, 392328944, 3102523829, 24839151315, 201011560316, 1642124006250, 13527821578754, 112279051170871, 938188211057701, 7887160187935198, 66672792338916470, 566452703137103796, 4834838039006782636
OFFSET
0,2
COMMENTS
These are also called [n,2]-triangulations.
Graphs can be enumerated and counted using the tool "plantri", in particular the command "./plantri -s -P5 -c2m2 [n]". - Manfred Scheucher, Mar 08 2018
REFERENCES
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
FORMULA
a(n) = (A005506(n) + A002711(n))/2. - Max Alekseyev, Oct 29 2012
CROSSREFS
Column k=2 of the array in A169808.
Sequence in context: A014512 A274804 A294222 * A065606 A049372 A050549
KEYWORD
nonn
EXTENSIONS
a(6)-a(11) from Manfred Scheucher, Mar 08 2018
Name clarified and terms a(12) and beyond from Andrew Howroyd, Feb 22 2021
STATUS
approved