[go: up one dir, main page]

login
A005502
Number of unrooted triangulations of a hexagon with n internal nodes.
(Formerly M2904)
3
3, 11, 53, 295, 1867, 12560, 89038, 652198, 4903955, 37627699, 293607612, 2323604832, 18614121391, 150704813812, 1231596828200, 10148762396401, 84252059397251, 704122279126074, 5920239345451780, 50051285956517452, 425273487358680290, 3630084126997807369
OFFSET
0,1
COMMENTS
These are also called [n,3]-triangulations.
Graphs can be enumerated and counted using the tool "plantri", in particular the command "./plantri -s -P6 -c2m2 [n]". - Manfred Scheucher, Mar 08 2018
REFERENCES
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
FORMULA
a(n) = (A005507(n) + A005495(n))/2 (based on Max Alekseyev's formula, cf. A005501 and A005500).
CROSSREFS
Column k=3 of the array in A169808.
Sequence in context: A053557 A039302 A074512 * A305710 A351200 A000255
KEYWORD
nonn
EXTENSIONS
a(5)-a(10) from Manfred Scheucher, Mar 08 2018
Name clarified and terms a(11) and beyond from Andrew Howroyd, Feb 22 2021
STATUS
approved