[go: up one dir, main page]

login
A005480
Decimal expansion of cube root of 4.
(Formerly M3771)
20
1, 5, 8, 7, 4, 0, 1, 0, 5, 1, 9, 6, 8, 1, 9, 9, 4, 7, 4, 7, 5, 1, 7, 0, 5, 6, 3, 9, 2, 7, 2, 3, 0, 8, 2, 6, 0, 3, 9, 1, 4, 9, 3, 3, 2, 7, 8, 9, 9, 8, 5, 3, 0, 0, 9, 8, 0, 8, 2, 8, 5, 7, 6, 1, 8, 2, 5, 2, 1, 6, 5, 0, 5, 6, 2, 4, 2, 1, 9, 1, 7, 3, 2, 7, 3, 5, 4, 4, 2, 1, 3, 2, 6, 2, 2, 2, 0, 9, 5, 7, 0, 2, 2, 9, 3, 4, 7, 6
OFFSET
1,2
COMMENTS
Let h = 4^(1/3). Then (h+1,0) is the x-intercept of the shortest segment from the x-axis through (1,2) to the y-axis; see A197008. - Clark Kimberling, Oct 10 2011
Let h = 4^(1/3). The relative maximum of xy(x+y)=1 is (-1/sqrt(h), h). - Clark Kimberling, Oct 05 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952), p. 173-176.
LINKS
FORMULA
Equals Product_{k>=0} (1 + (-1)^k/(3*k + 1)). - Amiram Eldar, Jul 25 2020
Equals A002580^2. - Michel Marcus, Jan 08 2022
Equals hypergeom([1/3, 1/6], [2/3], 1). - Peter Bala, Mar 02 2022
EXAMPLE
1.587401051968199474751705639272308260391493327899853...
MATHEMATICA
RealDigits[N[4^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
PROG
(PARI) default(realprecision, 20080); x=4^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005480.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009, with a correction made May 19 2009
CROSSREFS
Cf. A002947 (continued fraction). - Harry J. Smith, May 07 2009
Cf. A002580 (cube root of 2).
Sequence in context: A133731 A021067 A047914 * A204921 A021867 A346192
KEYWORD
nonn,cons,easy
AUTHOR
N. J. A. Sloane; entry revised Apr 23 2006
STATUS
approved