[go: up one dir, main page]

login
A005362
Hoggatt sequence with parameter d=4.
(Formerly M1789)
8
1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, 3966563630394, 42997859838010, 475191259977060, 5344193918791710, 61066078557804360, 707984385321707910, 8318207051955884772, 98936727936728464152
OFFSET
0,2
COMMENTS
Let V be the vector representation of SL(4) (of dimension 4) and let E be the exterior algebra of V (of dimension 16). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 18 2021
This is the number of 4-vicious walkers (aka vicious 4-watermelons) - see Essam and Guttmann (1995). This is the 4-walker analog of A001181. - N. J. A. Sloane, Mar 22 2021
REFERENCES
D. C. Fielder and C. O. Alford, "An investigation of sequences derived from Hoggatt sums and Hoggatt triangles", in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
D. C. Fielder and C. O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, Fib. Quart., 27 (1989), 160-168.
D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
FORMULA
From Richard L. Ollerton, Sep 12 2006: (Start)
a(n) = Hypergeometric4F3([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1).
(n+3)*(n+4)*(n+5)*(n+6)*a(n) = 6*(n+1)*(n+3)*(n+4)*(2*n+5)*a(n-1) + 4*(n-1)*n*(4*n+7)*(4*n+9)*a(n-2); a(0)=1, a(1)=2. (End)
a(n) = S(4,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 3 * 2^(4*n + 29/2) / (Pi^(3/2) * n^(15/2)). - Vaclav Kotesovec, Apr 01 2021
MAPLE
a := n -> hypergeom([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1):
seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 18 2021
MATHEMATICA
A005362[n_]:=HypergeometricPFQ[{-3-n, -2-n, -1-n, -n}, {2, 3, 4}, 1] (* Richard L. Ollerton, Sep 12 2006 *)
PROG
(Magma)
A056940:= func< n, k | (&*[Binomial(n+j, k)/Binomial(k+j, k): j in [0..3]]) >;
A005362:= func< n | (&+[A056940(n, k): k in [0..n]]) >;
[A005362(n): n in [0..30]]; // G. C. Greubel, Nov 14 2022
(SageMath)
def A005362(n): return simplify(hypergeometric([-3-n, -2-n, -1-n, -n], [2, 3, 4], 1))
[A005362(n) for n in range(41)] # G. C. Greubel, Nov 14 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved