[go: up one dir, main page]

login
A005040
Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation and reflection.
(Formerly M1851)
10
1, 1, 2, 8, 33, 194, 1196, 8196, 58140, 427975, 3223610, 24780752, 193610550, 1534060440, 12302123640, 99699690472, 815521503060, 6725991120004, 55882668179880, 467387136083296, 3932600361607809, 33269692212847056, 282863689410850236, 2415930985594609548
OFFSET
1,3
COMMENTS
Number of unoriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
E. V. Konstantinova, Com2Mac - Preprints [Dead link?]
FORMULA
See Mathematica code.
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A005038(n) - A369471(n) = (A005038(n) + A369472(n)) / 2 = A369471(n) + A369472(n). - Robert A. Russell, Jan 23 2024
MATHEMATICA
p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
CROSSREFS
Column k=5 of A295260.
Polyominoes: A005038 (oriented), A369471 (chiral), A369472 (achiral), A000207 {3,oo}, A005036 {4,oo}, A004127 {6,oo}, A005419 {7,oo}.
Sequence in context: A030821 A236382 A269890 * A380620 A191551 A263627
KEYWORD
nonn
EXTENSIONS
More terms from Sascha Kurz, Oct 13 2001.
Name edited by Andrew Howroyd, Nov 20 2017.
STATUS
approved