OFFSET
1,3
COMMENTS
Number of unoriented polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
E. V. Konstantinova, A survey of the cell-growth problem and some its variations, preprint, 2001.
E. V. Konstantinova, Com2Mac - Preprints [Dead link?]
FORMULA
See Mathematica code.
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016
MATHEMATICA
p=5; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sascha Kurz, Oct 13 2001.
Name edited by Andrew Howroyd, Nov 20 2017.
STATUS
approved