[go: up one dir, main page]

login
A004127
Number of planar hexagon trees with n hexagons.
(Formerly M2936)
12
1, 1, 3, 12, 68, 483, 3946, 34485, 315810, 2984570, 28907970, 285601251, 2868869733, 29227904840, 301430074416, 3141985563575, 33059739636198, 350763452126835, 3749420616902637, 40348040718155170, 436827335493148600
OFFSET
1,3
COMMENTS
Number of nonequivalent dissections of a polygon into n hexagons by nonintersecting diagonals up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of unoriented polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147.
L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]
FORMULA
See Theorem 3 on p. 142 in the Beineke-Pippert paper; also the Maple and Mathematica codes here.
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 13/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A221184(n-1) - A369473(n) = (A221184(n-1) + A143546(n)) / 2 = A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024
MAPLE
T := proc(n) if floor(n)=n then binomial(5*n+1, n)/(5*n+1) else 0 fi end: U := proc(n) if n mod 2 = 0 then binomial(5*n/2+1, n/2)/(5*n/2+1) else 6*binomial((5*n+1)/2, (n-1)/2)/(5*n+1) fi end: S := n->T(n)/4/(2*n+1)+T(n/2)/6+(5*n-2)*T((n-1)/3)/6/(2*n+1)+T((n-1)/6)/6+7*U(n)/12: seq(S(n), n=1..25); (Emeric Deutsch)
MATHEMATICA
p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
CROSSREFS
Column k=6 of A295260.
Cf. A002294.
Polyominoes: A221184{n-1} (oriented), A369473 (chiral), A143546 (achiral), A005040 {5,oo}, A005419 {7,oo}.
Sequence in context: A365655 A366228 A296979 * A058115 A101313 A257605
KEYWORD
nonn
EXTENSIONS
More terms from Emeric Deutsch, Jan 22 2004
STATUS
approved