[go: up one dir, main page]

login
A002945
Continued fraction for cube root of 2.
(Formerly M2220)
16
1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, In: W. Bosma, A. van der Poorten (eds), Computational Algebra and Number Theory. Mathematics and Its Applications, vol. 325.
Ashok Kumar Gupta and Ashok Kumar Mittal, Bifurcating continued fractions, arXiv:math/0002227 [math.GM] (2000).
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Delian Constant.
G. Xiao, Contfrac
FORMULA
From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)
EXAMPLE
2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
MAPLE
N:= 100: # to get a(1) to a(N)
a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
for n from 2 to N do
a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
p[n+1] := a[n]*p[n] + p[n-1];
q[n+1] := a[n]*q[n] + q[n-1];
od:
seq(a[i], i=1..N); # Robert Israel, Jul 30 2014
MATHEMATICA
ContinuedFraction[Power[2, (3)^-1], 70] (* Harvey P. Dale, Sep 29 2011 *)
PROG
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
(Magma) ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
CROSSREFS
Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).
Sequence in context: A187367 A307410 A305444 * A171232 A093423 A326454
KEYWORD
cofr,nonn
EXTENSIONS
BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved