OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..19999
E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, In: W. Bosma, A. van der Poorten (eds), Computational Algebra and Number Theory. Mathematics and Its Applications, vol. 325.
Ashok Kumar Gupta and Ashok Kumar Mittal, Bifurcating continued fractions, arXiv:math/0002227 [math.GM] (2000).
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Herman P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
Eric Weisstein's World of Mathematics, Delian Constant.
G. Xiao, Contfrac
FORMULA
From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)
EXAMPLE
2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
MAPLE
N:= 100: # to get a(1) to a(N)
a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
for n from 2 to N do
a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
p[n+1] := a[n]*p[n] + p[n-1];
q[n+1] := a[n]*q[n] + q[n-1];
od:
seq(a[i], i=1..N); # Robert Israel, Jul 30 2014
MATHEMATICA
ContinuedFraction[Power[2, (3)^-1], 70] (* Harvey P. Dale, Sep 29 2011 *)
PROG
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
(Magma) ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
CROSSREFS
KEYWORD
cofr,nonn
AUTHOR
EXTENSIONS
BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved