[go: up one dir, main page]

login
A002438
Multiples of Euler numbers.
(Formerly M4029 N1672)
7
1, 5, 205, 22265, 4544185, 1491632525, 718181418565, 476768795646785, 417370516232719345, 465849831125196593045, 645702241048404020542525, 1088120580608731523115639305, 2190881346273790815462670984105
OFFSET
1,2
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
Glaisher, J. W. L.; Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A000364(n-1) * (9^(n-1) + 1)/2.
a(n+1) = Sum_{k = 0..n} A086646(n, k)*(-4)^k*9^(n-k). - Philippe Deléham, Aug 26 2005
From Peter Bala, Mar 13 2015: (Start)
a(n+1) = (-1)^n*6^(2*n)*E(2*n,1/6).
Assuming an offset of 0, the e.g.f. is cos(2*x)/cos(3*x) = 1 + 5*x + 205*x^2/2! + 22265*x^3/3! + 4544185*x^4/4! + ....
O.g.f. as a continued fraction: x/(1 - (3^2 - 2^2)*x/(1 - 6^2*x/(1 - (9^2 - 2^2)*x/(1 - 12^2*x/(1 - ... ))))) = x + 5*x^2 + 205*x^3 + 22265*x^4 + 4544185*x^5 + .... See Josuat-Vergès and Kim, p. 23. Cf. A086646.
The expansion of exp( Sum_{n >= 1} a(n+1)*x^n/n ) = exp( 5*x + 205*x^2/2 + 22265*x^3/3 + 4544185 *x^4/4 + ... ) appears to have integer coefficients. See A255884.
(End)
From Peter Bala, Nov 10 2015: (Start)
O.g.f. A(x) = 1/(1 + x - 6*x/(1 - 30*x/(1 + x - 84*x/(1 - 132*x/(1 + x - ... - 6*n*(6*n - 5)*x/(1 - 6*n*(6*n - 1)*x/(1 + x - ))))))).
A(x) = 1/(1 + 25*x - 30*x/(1 - 6*x/(1 + 25*x - 132*x/(1 - 84*x/(1 + 25*x - ... - 6*n*(6*n - 1)*x/(1 - 6*n*(6*n - 5)*x/(1 + 25*x - ))))))). (End)
MATHEMATICA
a[n_] := (1+9^(n-1))*Abs[EulerE[2*(n-1)]]/2; Table[ a[n], {n, 1, 13}](* Jean-François Alcover, Feb 10 2012 *)
PROG
(PARI) A002438(n)=A000364(n-1)*(9^(n-1)+1)\2 \\ - M. F. Hasler, Jul 21 2013
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Herman P. Robinson
More terms from Jon E. Schoenfield, May 09 2010
STATUS
approved