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1. An S-fraction (also known as a fraction of Stieltjes-type) is a continued
fraction of the form

S(x) = (1)

We say that it corresponds to the formal power series
fx) = l+cz+ca®+--- (2)
if the expansion of its nt"* approximant in ascending powers of = agrees with

the power series (2) up to and including the term in 2" 1, n =1,2,3,....

Recall the even part of a continued fraction is the continued fraction whose
n-th approximant is the 2n-th approximant of the given continued fraction.
The even part of the generic S-fraction (1) is given by [2, Chapter 1, Section 4]
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3) is an example of a J-fraction (J stands for Jacobi). The general form of a
J-fraction is
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We say that the this J-fraction is asociated with the formal power series (2),
denoted by J(x) = f(x), if the expansion of its n** approximant in ascending
powers of z agrees with the power series (2) up to and including the term in
221 n=1,23....



By making use of an equivalence transformation it is easy to see that the m!"

binomial transform of the generic J-fraction J(x) also has the form of a
J-fraction:
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Now in general, a J-fraction will not be the even part of an S-fraction. The
purpose of this note is to give some examples of J-fractions whose m"
binomial transform, for particular values of m, is equal to the even part of an
S-fraction. In Section 2 we consider the J-fraction associated with the
trigonometric function sin(az)/acos(bx). The form of the J-fraction is due to
Stieltjes. We show there are two values of m such that the m!" binomial
transform of Stieltjes’ J-fraction equals the even part of an S-fraction. There
are similar results for the trigonometric function cos(az)/cos(bx), which we
outline in Section 3.

2. Consider the exponential generating function sin(az)/acos(bx), with
complex parameters a and b. The Taylor expansion of the function about
x = 0 begins
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The coefficients in the expansion are homogeneous polynomials in ¢ and b. See
A104033 for information about these polynomials. Let A, ;(z) denote the
ordinary generating function for this sequence of polynomials (taken with an
offset of 0):

Aap(z) = 1—(a®—3b*) 2+ (a* — 10a°b*z + 25b) 22
— (a% — 21a%b? + 175a%0" — 4270%) 2® + - - - .

The J-fraction associated with A, ;(x) is given by
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https://oeis.org/A104033

where

an 4n?b? (4n2b2 — a2) ,
by = 4(2n* —2n+1)0> —a® — >

This is a particular case of a result of Stieltjes (see [1, equation 18, p. 386 |
with ¢ = 2b).

Proposition 1. Let a,b € C and let m = (b— a)?. Let A, () be the
J-fraction given by (6). Then the m'™ binomial transform of A, ,(x) is the
even part of the S-fraction
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Proof. By (3), the even part of (7) is the J-fraction
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where the n!” numerator equals
2nb(2nb — a)2nb(2nb +a) = 4n*b*(4n*b? — a?)
and the n*"* denominator is given by
2nb(2nb +a) + 2(n+ 1)b(2(n+ 1)b—a) = 4(2n®+2n+ 1) b* — 2ab.

On the other hand, by applying (4) to (6), we find the m!" binomial transform
of A, u(x) has the J-fraction representation
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where the n'" numerator is given by

an = 4n*b*(4n2b? — a?),



and the n** denominator is given by
bpt1+m=4 (2712 + 2n + 1) b2 — 2ab.

Thus (9) equals the even part of (7) as claimed. [J

The function sin(ax)/acos(bx) is unchanged on replacing a with —a. Hence
the associated ordinary generating function A, ;(z) satisfies

A_,p(z) = Ay p(z). As an immediate consequence we have the following
companion result to Proposition 1.

Proposition 2. Let a,b € C and let M = (b+ a)?. Let A, p(z) be the
J-fraction given by (6). Then the M binomial transform of A, p(x) is the
even part of the S-fraction
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Corollary 1. The following continued fraction identity holds:
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or equivalently, changing a to —a,
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Proof. Comparing Proposition 1 with Proposition 2, we see that the
S-fraction (10) is the (M — m)™ = (a+ b)? — (a — b)? = (4ab)** binomial
transform of the S-fraction (7). Making use of (4) we arrive at the desired
result. O



Example 1. A000182 is the sequence of tangent numbers [1, 2, 16, 272, 7936,
...]- The e.g.f. is tan(z) = sin(x)/cos(x). Applying Proposition 1 with a =1
and b = 1 gives the (well-known) result that the o.g.f. for the tangent numbers
corresponds to the S-fraction

where the (unsigned) partial numerators are given by n(n+1),n =1,2,....

By Proposition 2, the 4" binomial transform of the o.g.f. for the tangent
numbers corresponds to the S-fraction

Corollary 1 gives the continued fraction identity
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Example 2. A002439 is the sequence of Glaisher’s T-numbers [1, 23, 1681,
257543, ...]. The e.g.f. is 1/2 X sin(2z)/cos(3z). By (6), the J-fraction
associated with the generating function of this sequence begins
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Applying Proposition 1 with a = 2 and b = 3 we find that the binomial
transform of the ordinary generating function of A002439 corresponds to the

elegant S-fraction
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where the multiplicands 1,2,5,7,... in the partial numerators are the
generalized pentagonal numbers A001318. Thus the o.g.f. of Glaisher’s
T-numbers has the continued fraction representation
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By Proposition 2, the 25" binomial transform of the ordinary generating
function of A002439 corresponds to the S-fraction
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where now where the multiplicands 2,1,7,5,... in the partial numerators are
obtained by swapping adjacent generalized pentagonal numbers. Thus we have
an alternative representation for the o.g.f. of Glaisher’s T-numbers as
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Corollary 1 in this case leads to the continued fraction identity
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Remark 1. It follows from a formula of Zagier for the terms of A079144| that
the S-fraction on the left-hand side of (11) is a generating function for the
number of labeled interval orders on n elements (the number of (2+2)-free
posets).

3. Consider now the exponential generating function cos(ax)/cos(bz), with a
and b constants. The Taylor expansion of the function about x = 0 begins
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The coefficients in the expansion are homogeneous polynomials in ¢ and b. See
A086646 for information about these polynomials. Let C, () denote the
ordinary generating function for this sequence of polynomials (taken with an
offset of 0):

Cop(z) = 1—(b¥—a)z+ (5b* — 16b%a* + a*) 22
— (610° — 75b%a® + 15b%a* — a®) 2® + - - .
The J-fraction associated to Cy »(z) , which turns out to be an S-fraction, is
essentially due to Stieltjes and can be found by applying Stieltjes’ expansion

theorem, [2, Chapter 11, Section 53] to an addition formula satisfied by
cos(ax)/cos(bx). The result is
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The same method used in Section 2 to prove Proposition 1 can be used to
establish the following result.
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Proposition 3. Let a,b € C. Let C, () be given by (13).

(i) Define m = (b —a)?. Then the m'" binomial transform of C, () equals
the S-fraction
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(ii) Define M = (b+ a)?. Then the M*" binomial transform of C,;(z) equals
the S-fraction
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Since (15) is the (M —m)*" = (4ab)*" binomial transform of (14) then by (4)
we have the following identity:

Corollary 2.
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Remark 2. The continued fraction identities in Corollaries 1 and 2 appear to
be particular cases of a more general identity
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where {\,, },>1 is an arbitrary sequence. Indeed, the 2n-th approximants of
the left and right sides of (16) seem to be identically equal.
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