OFFSET
0,1
COMMENTS
Newton calculated the first 16 terms of this sequence.
Area bounded by y = tan x, y = cot x, y = 0. - Clark Kimberling, Jun 26 2020
REFERENCES
G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.
Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 227.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Sections 1.3.3 and 6.2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
D. H. Bailey and J. M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the AMS, May 2005, Volume 52, Issue 5.
Peter Bala, New series for old functions
J. M. Borwein, P. B. Borwein, and K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
Paul Cooijmans, Odds.
X. Gourdon and P. Sebah, The logarithm constant:log(2).
M. Kontsevich and D. Zagier, Periods, pp. 4-5.
Mathematical Reflections, Solution to Problem U376, Issue 4, 2016, p 17. [Broken link]
Isaac Newton, The method of fluxions and infinite series; with its application to the geometry of curve-lines, 1736; see p. 96.
Michael Penn, an alternating floor sum., YouTube video, 2020.
Michael Penn, A wonderful limit from the 2011 Virginia Tech Regional Math Competition, YouTube video, 2022.
Simon Plouffe, log(2), natural logarithm of 2 to 2000 places.
S. Ramanujan, Question 260, J. Ind. Math. Soc., III, p. 43.
Albert Stadler, Problem 3567, Crux Mathematicorum, Vol. 36 (Oct. 2010), p. 396; Oliver Geupel, Solution, Crux Mathematicorum, Vol. 37 (Oct. 2011), pp. 400-401.
D. W. Sweeney, On the computation of Euler's constant, Math. Comp., 17 (1963), 170-178.
Horace S. Uhler, Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17, Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.
Eric Weisstein's World of Mathematics, Natural Logarithm of 2, Masser-Gramain Constant, Logarithmic Integral, Dirichlet Eta Function.
Wikipedia, Natural logarithm of 2.
Wikipedia, Period (algebraic geometry).
FORMULA
log(2) = Sum_{k>=1} 1/(k*2^k) = Sum_{j>=1} (-1)^(j+1)/j.
log(2) = Integral_{t=0..1} dt/(1+t).
log(2) = (2/3) * (1 + Sum_{k>=1} 2/((4*k)^3-4*k)) (Ramanujan).
log(2) = 4*Sum_{k>=0} (3-2*sqrt(2))^(2*k+1)/(2*k+1) (Y. Luke). - R. J. Mathar, Jul 13 2006
log(2) = 1 - (1/2)*Sum_{k>=1} 1/(k*(2*k+1)). - Jaume Oliver Lafont, Jan 06 2009, Jan 08 2009
log(2) = 4*Sum_{k>=0} 1/((4*k+1)*(4*k+2)*(4*k+3)). - Jaume Oliver Lafont, Jan 08 2009
From Alexander R. Povolotsky, Jul 04 2009: (Start)
log(2) = (1/4)*(3 - Sum_{n>=1} 1/(n*(n+1)*(2*n+1))).
log(2) = (230166911/9240 - Sum_{k>=1} (1/2)^k*(11/k + 10/(k+1) + 9/(k+2) + 8/(k+3) + 7/(k+4) + 6/(k+5) - 6/(k+7) - 7/(k+8) - 8/(k+9) - 9/(k+10) - 10/(k+11)))/35917. (End)
From log(1-x-x^2) at x=1/2, log(2) = (1/2)*Sum_{k>=1} L(k)/(k*2^k), where L(n) is the n-th Lucas number (A000032). - Jaume Oliver Lafont, Oct 24 2009
log(2) = Sum_{k>=1} 1/(cos(k*Pi/3)*k*2^k) (cf. A176900). - Jaume Oliver Lafont, Apr 29 2010
log(2) = (Sum_{n>=1} 1/(n^2*(n+1)^2*(2*n+1)) + 11)/16. - Alexander R. Povolotsky, Jan 13 2011
log(2) = (Sum_{n>=1} (2*n+1)/(Sum_{k=1..n} k^2)^2))+396)/576. - Alexander R. Povolotsky, Jan 14 2011
From Alexander R. Povolotsky, Dec 16 2008: (Start)
log(2) = 105*(Sum_{n>=1} 1/(2*n*(2*n+1)*(2*n+3)*(2*n+5)*(2*n+7)))-319/44100).
log(2) = 319/420 - (3/2)*Sum_{n>=1} 1/(6*n^2+39*n+63)). (End)
log(2) = Sum_{k>=1} A191907(2,k)/k. - Mats Granvik, Jun 19 2011
log(2) = Integral_{x=0..oo} 1/(1 + e^x) dx. - Jean-François Alcover, Mar 21 2013
log(2) = lim_{s->1} zeta(s)*(1-1/2^(s-1)). - Mats Granvik, Jun 18 2013
From Peter Bala, Dec 10 2013: (Start)
log(2) = (1/3)*Sum_{n >= 0} (5*n+4)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(1/2)^n = (1/12)*Sum_{n >= 0} (28*n+17)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(-1/4)^n.
log(2) = (3/16)*Sum_{n >= 0} (14*n+11)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(1/4)^n = (1/12)*Sum_{n >= 0} (34*n+25)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(-1/18)^n. For more series of this type see the Bala link.
See A142979 for series acceleration formulas for log(2) obtained from the Mercator series log(2) = Sum_{n >= 1} (-1)^(n+1)/n. See A142992 for series for log(2) related to the root lattice C_n. (End)
log(2) = lim_{n->oo} Sum_{k=2^n..2^(n+1)-1} 1/k. - Richard R. Forberg, Aug 16 2014
From Peter Bala, Feb 03: (Start)
log(2) = (2/3)*Sum_{k >= 0} 1/((2*k + 1)*9^k).
Define a pair of integer sequences A(n) = 9^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} 1/((2*k + 1)*9^k). Both satisfy the same second-order recurrence equation u(n) = (40*n + 16)*u(n-1) - 36*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion log(2) = (2/3)*(1 + 2/(54 - 36*3^2/(96 - 36*5^2/(136 - ... - 36*(2*n - 1)^2/((40*n + 16) - ... ))))). Cf. A002391, A073000 and A105531 for similar expansions. (End)
log(2) = Sum_{n>=1} (Zeta(2*n)-1)/n. - Vaclav Kotesovec, Dec 11 2015
From Peter Bala, Oct 30 2016: (Start)
Asymptotic expansions:
for N even, log(2) - Sum_{k = 1..N/2} (-1)^(k-1)/k ~ (-1)^(N/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1. See Borwein et al., Theorem 1 (b);
for N odd, log(2) - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/k ~ (-1)^((N-1)/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), by Borwein et al., Lemma 2 with f(x) := 1/(x + 1/2), h := 1/2 and then set x = (N - 1)/2, where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. (End)
log(2) = lim_{n->oo} Sum_{k=1..n} sin(1/(n+k)). See Mathematical Reflections link. - Michel Marcus, Jan 07 2017
log(2) = Sum_{n>=1} (A006519(n) / ( (1+2^A006519(n)) * A000265(n) * (1 + A000265(n))). - Nicolas Nagel, Mar 19 2018
From Amiram Eldar, Jul 02 2020: (Start)
Equals Sum_{k>=2} zeta(k)/2^k.
Equals -Sum_{k>=2} log(1 - 1/k^2).
Equals Sum_{k>=1} 1/A002939(k).
Equals Integral_{x=0..Pi/3} tan(x) dx. (End)
log(2) = Integral_{x=0..Pi/2} (sec(x) - tan(x)) dx. - Clark Kimberling, Jul 08 2020
From Peter Bala, Nov 14 2020: (Start)
log(2) = Integral_{x = 0..1} (x - 1)/log(x) dx (Boros and Moll, p. 97).
log(2) = (1/2)*Integral_{x = 0..1} (x + 2)*(x - 1)^2/log(x)^2 dx.
log(2) = (1/4)*Integral_{x = 0..1} (x^2 + 3*x + 4)*(x - 1)^3/log(x)^3 dx. (End)
log(2) = 2*arcsinh(sqrt(2)/4) = 2*sqrt(2)*Sum_{n >= 0} (-1)^n*C(2*n,n)/ ((8*n+4)*32^n) = 3*Sum_{n >= 0} (-1)^n/((8*n+4)*(2^n)*C(2*n,n)). - Peter Bala, Jan 14 2022
log(2) = Integral_{x=0..oo} ( e^(-x) * (1-e^(-2x)) * (1-e^(-4x)) * (1-e^(-6x)) ) / ( x * (1-e^(-14x)) ) dx (see Crux Mathematicorum link). - Bernard Schott, Jul 11 2022
From Peter Bala, Oct 22 2023: (Start)
log(2) = 23/32 + 2!^3/16 * Sum_{n >= 1} (-1)^n * (n + 1)/(n*(n + 1)*(n + 2))^2 = 707/1024 - 4!^3/(16^2 * 2!^2) * Sum_{n >= 1} (-1)^n * (n + 2)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^2 = 42611/61440 + 6!^3/(16^3 * 3!^2) * Sum_{n >= 1} (-1)^n * (n + 3)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6))^2.
More generally, it appears that for k >= 0, log(2) = c(k) + (2*k)!^3/(16^k * k!^2) * Sum_{n >= 1} (-1)^(n+k+1) * (n + k)/(n*(n + 1)*...*(n + 2*k))^2 , where c(k) is a rational approximation to log(2). The first few values of c(k) are [0, 23/32, 707/1024, 42611/61440, 38154331/55050240, 76317139/110100480, 26863086823/38755368960, ...].
Let P(n,k) = n*(n + 1)*...*(n + k).
Conjecture: for k >= 0 and r even with r - 1 <= k, the series Sum_{n >= 1} (-1)^n * (d/dn)^r (P(n,k)) / (P(n,k)^2 = A(r,k)*log(2) + B(r,k), where A(r,k) and B(r,k) are both rational numbers. (End)
From Peter Bala, Nov 13 2023: (Start)
log(2) = 5/8 + (1/8)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)^2 / ( k*(k + 1) )^4
= 257/384 + (3!^5/2^9)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)^2*(2*k + 5) / ( k*(k + 1)*(k + 2)*(k + 3) )^4
= 267515/393216 + (5!^5/2^19)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)*(2*k + 5)^2*(2*k + 7)*(2*k + 9) / ( k*(k + 1)*(k + 2)*(k + 3)*(k + 4)*(k + 5) )^4
log(2) = 3/4 - 1/128 * Sum_{k >= 0} (-1/16)^k * (10*k + 12)*binomial(2*k+2,k+1)/ ((k + 1)*(2*k + 3)). The terms of the series are O(1/(k^(3/2)*4^n)). (End)
log(2) = eta(1) is a period, where eta(x) is the Dirichlet eta function. - Andrea Pinos, Mar 19 2024
log(2) = K_{n>=0} (n^2 + [n=0])/1, where K is the Gauss notation for an infinite continued fraction. In the expanded form, log(2) = 1/(1 + 1/(1 + 4/(1 + 9/1 + 16/(1 + 25/(1 + ... (see Clawson at p. 227). - Stefano Spezia, Jul 01 2024
log(2) = lim_{n->oo} Sum_{k=1..n} 1/(n + k) = lim_{x->0} (2^x - 1)/x = lim_{x->0} (2^x - 2^(-x))/(2*x) (see Finch). - Stefano Spezia, Oct 19 2024
EXAMPLE
0.693147180559945309417232121458176568075500134360255254120680009493393...
MATHEMATICA
RealDigits[N[Log[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
RealDigits[Log[2], 10, 120][[1]] (* Harvey P. Dale, Jan 25 2024 *)
PROG
(PARI) { default(realprecision, 20080); x=10*log(2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b002162.txt", n, " ", d)); } \\ Harry J. Smith, Apr 21 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved