[go: up one dir, main page]

login
A001051
Number of subgroups of order n in orthogonal group O(3).
2
1, 3, 1, 5, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 10, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Orthogonal Group.
FORMULA
Has period 1 5 1 7 except that a(2) = 3, a(4) = 5, a(12) = 8, a(24) = 10, a(48) = a(60) = a(120) = 8.
MATHEMATICA
a[2] = 3; a[4] = 5; a[12] = 8; a[24] = 10; a[48] = a[60] = a[120] = 8; a[n_] := Switch[Mod[n, 4], 0, 7, 1, 1, 2, 5, 3, 1]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Oct 15 2013 *)
PROG
(PARI) A001051(n) = if((12==n)||(48==n)||(60==n)||(120==n), 8, if(24==n, 10, if((4==n)||(2==n), 1+n, [1, 5, 1, 7][1+((n-1)%4)]))); \\ Antti Karttunen, Jan 15 2019
CROSSREFS
The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.
Sequence in context: A352453 A208239 A114567 * A214737 A348161 A334194
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Data section extended up to a(120) by Antti Karttunen, Jan 15 2019
STATUS
approved