Ecosystem Intelligence for AI-based Assistant Platforms
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Digital assistants like Alexa, Google Assistant, or Siri have seen a large adoption over the past years. Using artificial intelligence (AI) technologies, they provide a vocal interface to physical devices as well as to digital services and have spurred an entire new eco-system. This comprises the big tech companies themselves, but also a strongly growing community of developers that make these functionalities available via digital platforms. At present, only few research is available to understand the structure and the value creation logic of these AI-based assistant platforms and their ecosystem. This research adopts ecosystem intelligence to shed light on their structure and dynamics. It combines existing data collection methods with an automated approach that proves useful in deriving a network-based conceptual model of Amazon's Alexa assistant platform and ecosystem. It shows that skills are a key unit of modularity in this ecosystem, which is linked to other elements such as service, data, and money flows. It also suggests that the topology of the Alexa ecosystem may be described using the criteria reflexivity, symmetry, variance, strength, and centrality of the skill coactivations. Finally, it identifies three ways to create and capture value on AI-based assistant platforms. Surprisingly only a few skills use a transactional business model by selling services and goods but many skills are complementary and provide information, configuration, and control services for other skill provider products and services. These findings provide new insights into the highly relevant ecosystems of AI-based assistant platforms, which might serve enterprises in developing their strategies in these ecosystems. They might also pave the way to a faster, data-driven approach for ecosystem intelligence.
Description
Keywords
Artificial Intelligence-based Assistants, ai-based assistants, ecosystem intelligence, ecosystems, platforms
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.