[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

γδ T cells as critical anti-tumor immune effectors

Abstract

While the effector cells that mediate anti-tumor immunity have historically been attributed to αβ T cells and natural killer cells, γδ T cells are now being recognized as a complementary mechanism mediating tumor rejection. γδ T cells possess a host of functions ranging from antigen presentation to regulatory function and, importantly, have critical roles in eliciting anti-tumor responses where other immune effectors may be rendered ineffective. Recent discoveries have elucidated how these differing functions are mediated by γδ T cells with specific T cell receptors and spatial distribution. Their relative resistance to mechanisms of dysfunction like T cell exhaustion has spurred the development of therapeutic approaches exploiting γδ T cells, and an improved understanding of these cells should enable more effective immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protumoral and anti-tumoral roles of γδ T cells.
Fig. 2: Pathways regulating γδ T cell ligand expression.
Fig. 3: Immune checkpoint expression related to the function of tumor-infiltrating γδ T cells.
Fig. 4: Approaches to current challenges and desired outcomes.

Similar content being viewed by others

References

  1. Saito, H. et al. Complete primary structure of a heterodimeric T-cell receptor deduced from eDNA sequences. Nature 309, 757–762 (1984).

  2. Brenner, M. B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayday, A. C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonneville, M., O’Brien, R. L. & Born, W. K. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Silva-Santos, B., Mensurado, S. & Coffelt, S. B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pellicci, D. G., Koay, H.-F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Hu, Y. et al. T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct. Target. Ther. 8, 434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hunter, S. et al. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davey, M. S. et al. Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khairallah, C. et al. γδ T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog. 11, e1004702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ravens, S. et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Khairallah, C., Déchanet-Merville, J. & Capone, M. γδ T cell-mediated immunity to cytomegalovirus infection. Front. Immunol. 8, 105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Street, S. E. A. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, D., Wu, P., Qiu, F., Wei, Q. & Huang, J. Human γδT-cell subsets and their involvement in tumor immunity. Cell. Mol. Immunol. 14, 245–253 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Willcox, C. R., Davey, M. S. & Willcox, B. E. Development and selection of the human Vγ9Vδ2+ T-cell repertoire. Front. Immunol. 9, 1501 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wrobel, P. et al. Lysis of a broad range of epithelial tumour cells by human γδ T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand. J. Immunol. 66, 320–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Rincon-Orozco, B. et al. Activation of Vγ9Vδ2 T cells by NKG2D. J. Immunol. 175, 2144–2151 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Tokuyama, H. et al. Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs—rituximab and trastuzumab. Int. J. Cancer 122, 2526–2534 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Brandes, M. et al. Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc. Natl Acad. Sci. USA 106, 2307–2312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krangel, M. S., Yssel, H., Brocklehurst, C. & Spits, H. A distinct wave of human T cell receptor γ/δ lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J. Exp. Med. 172, 847–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Di Lorenzo, B., Ravens, S. & Silva-Santos, B. High-throughput analysis of the human thymic Vδ1+ T cell receptor repertoire. Sci. Data 6, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sanz, M. et al. Deep characterization of human γδ T cell subsets defines shared and lineage-specific traits. Front. Immunol. 14, 1148988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poggi, A. et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 64, 9172–9179 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Knight, A., Mackinnon, S. & Lowdell, M. W. Human Vδ1 γ-δ T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 14, 1110–1118 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Mikulak, J. et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 4, e125884 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Correia, D. V. et al. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Pitard, V. et al. Long-term expansion of effector/memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farnault, L. et al. Clinical evidence implicating γ-δ T cells in EBV control following cord blood transplantation. Bone Marrow Transplant. 48, 1478–1479 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Fujishima, N. et al. Skewed T cell receptor repertoire of Vδ1+ γδ T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein–Barr virus-infected B cells in clonal restriction. Clin. Exp. Immunol. 149, 70–79 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kenna, T. et al. Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clin. Immunol. 113, 56–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Mangan, B. A. et al. Cutting edge: CD1d restriction and TH1/TH2/TH17 cytokine secretion by human Vδ3 T cells. J. Immunol. 191, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Dunne, M. R. et al. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS ONE 8, e76008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Willcox, B. E. & Willcox, C. R. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Jacques, J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol. 147, 338–347 (1996).

    Google Scholar 

  44. Dieli, F. et al. Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis bacillus Calmette–Guérin. J. Immunol. 170, 463–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Lang, J. M. et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol. Immunother. 60, 1447–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher, J. P. H. et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative γδT cells following expansion by artificial antigen-presenting cells. Clin. Cancer Res. 20, 5720–5732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Karunakaran, M. M. et al. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat. Commun. 14, 7617 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mensurado, S., Blanco-Domínguez, R. & Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C. & Kalyan, S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell. Mol. Immunol. 17, 925–939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Legut, M., Cole, D. K. & Sewell, A. K. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell. Mol. Immunol. 12, 656–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Vries, N. L. et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rancan, C. et al. Exhausted intratumoral Vδ2 γδ T cells in human kidney cancer retain effector function. Nat. Immunol. 24, 612–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, Y. et al. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11, eaax9364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, Y. et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zakeri, N. et al. Characterisation and induction of tissue-resident γ δ T-cells to target hepatocellular carcinoma. Nat. Commun. 13, 1372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paul, S. & Lal, G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int. J. Cancer 139, 976–985 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sacchi, A. et al. Myeloid-derived suppressor cells specifically suppress IFN-γ production and antitumor cytotoxic activity of Vδ2 T cells. Front. Immunol. 9, 1271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Moser, B. & Brandes, M. γδ T cells: an alternative type of professional APC. Trends Immunol. 27, 112–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Rampoldi, F., Ullrich, L. & Prinz, I. Revisiting the interaction of γδ T-cells and B-cells. Cells 9, 743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mensurado, S. et al. Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLoS Biol. 16, e2004990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harmon, C. et al. γδ T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors. Nat. Cancer 4, 1122–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Ye, J. et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 190, 2403–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Ma, C. et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, G. et al. Tumor-infiltrating CD39+ γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 6, e1277305 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Castella, B. et al. Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology 4, e1047580 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mao, Y. et al. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell. Mol. Immunol. 13, 217–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Viey, E. et al. Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J. Immunol. 174, 1338–1347 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Inman, B. A. et al. Questionable relevance of γδ T lymphocytes in renal cell carcinoma. J. Immunol. 180, 3578–3584 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Roy, S. et al. Molecular analysis of lipid-reactive Vδ1 γδ T cells identified by CD1c tetramers. J. Immunol. 196, 1933–1942 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Luoma, A. M. et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Barbee, S. D. et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl Acad. Sci. USA 108, 3330–3335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marlin, R. et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA 114, 3163–3168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, J., Groh, V. & Spies, T. T. Cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J. Immunol. 169, 1236–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Dai, Y., Chen, H., Mo, C., Cui, L. & He, W. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human γδ T cells to induce innate anti-tumor/virus immunity. J. Biol. Chem. 287, 16812–16819 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Le Nours, J. et al. A class of γδ T cell receptors recognize the underside of the antigen-presenting molecule MR1. Science 366, 1522–1527 (2019).

    Article  PubMed  Google Scholar 

  82. Rice, M. T. et al. Recognition of the antigen-presenting molecule MR1 by a Vδ3+ γδ T cell receptor. Proc. Natl Acad. Sci. USA 118, e2110288118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Silva‐Santos, B., Schamel, W. W. A., Fisch, P. & Eberl, M. γδ T‐cell conference 2012: close encounters for the fifth time. Eur. J. Immunol. 42, 3101–3105 (2012).

    Article  PubMed  Google Scholar 

  84. Kong, Y. et al. The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. Blood 114, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Scotet, E. et al. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. McGraw, J. M. & Witherden, D. A. γδ T cell costimulatory ligands in antitumor immunity. Explor. Immunol. 2, 79–97 (2022).

  88. Toutirais, O. et al. DNAX accessory molecule‐1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9Vδ2 T cells. Eur. J. Immunol. 39, 1361–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Herold, N. et al. Integrin activation enables rapid detection of functional Vδ1+ and Vδ2+ γδ T cells. Eur. J. Immunol. 52, 730–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Gober, H.-J. et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morita, C. T., Jin, C., Sarikonda, G. & Wang, H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 215, 59–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, H. et al. Identification of human T cell receptor γδ-recognized epitopes/proteins via CDR3δ peptide-based immunobiochemical strategy. J. Biol. Chem. 283, 12528–12537 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kunzmann, V. et al. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96, 384–392 (2000).

  94. Payne, K. K. et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science 369, 942–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mamedov, M. R. et al. CRISPR screens decode cancer cell pathways that trigger γδ T cell detection. Nature 621, 188–195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Song, Z. et al. Human γδ T cell identification from single-cell RNA sequencing datasets by modular TCR expression. J. Leukoc. Biol. 114, 630–638 (2023).

  97. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, Y.-L. et al. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology 9, 1830513 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Peters, C., Oberg, H.-H., Kabelitz, D. & Wesch, D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell. Mol. Life Sci. 71, 1943–1960 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Dondero, A. et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 5, e1064578 (2016).

    Article  PubMed  Google Scholar 

  103. Hoeres, T., Holzmann, E., Smetak, M., Birkmann, J. & Wilhelm, M. PD-1 signaling modulates interferon-γ production by gamma delta (γδ) T-cells in response to leukemia. Oncoimmunology 8, 1550618 (2019).

    Article  PubMed  Google Scholar 

  104. Wu, K. et al. Vδ2 T cell subsets, defined by PD-1 and TIM-3 expression, present varied cytokine responses in acute myeloid leukemia patients. Int. Immunopharmacol. 80, 106122 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Weimer, P. et al. Tissue-specific expression of TIGIT, PD-1, TIM-3, and CD39 by γδ T cells in ovarian cancer. Cells 11, 964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wistuba-Hamprecht, K. et al. Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur. J. Cancer 64, 116–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Foord, E., Arruda, L. C. M., Gaballa, A., Klynning, C. & Uhlin, M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci. Transl. Med. 13, eabb0192 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Davies, D. et al. PD-1 defines a distinct, functional, tissue-adapted state in Vδ1+ T cells with implications for cancer immunotherapy. Nat. Cancer 5, 420–432 (2024).

  109. Lien, S. C. et al. Tumor reactive γδ T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. Nat. Commun. 15, 1094 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hoeres, T., Smetak, M., Pretscher, D. & Wilhelm, M. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front. Immunol. 9, 800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kobayashi, H. et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γ-δ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol. Immunother. 56, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N. & Tanabe, K. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075–1084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bennouna, J. et al. Phase-I study of Innacell γδ™, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol. Immunother. 57, 1599–1609 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakajima, J. et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells. Eur. J. Cardiothorac. Surg. 37, 1191–1197 (2010).

    Article  PubMed  Google Scholar 

  115. Meraviglia, S. et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nicol, A. J. et al. Clinical evaluation of autologous γ δ T cell-based immunotherapy for metastatic solid tumours. Br. J. Cancer 105, 778–786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kakimi, K. et al. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J. Immunother. Cancer 8, e001185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Aoki, T. et al. Adjuvant combination therapy with gemcitabine and autologous γδ T-cell transfer in patients with curatively resected pancreatic cancer. Cytotherapy 19, 473–485 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Lobbous, M. et al. INB-200 phase I study of gene modified autologous gamma-delta (γδ) T cells in patients with newly diagnosed glioblastoma multiforme (GBM) receiving maintenance temozolomide (TMZ). J. Clin. Oncol. 41, 2007 (2023).

    Article  Google Scholar 

  120. Sebestyen, Z., Prinz, I., Déchanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Vydra, J. et al. A phase I trial of allogeneic γδ T lymphocytes from haploidentical donors in patients with refractory or relapsed acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 23, e232–e239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lamb, L., Rochlin, K. & Goshwani, T. Harnessing the Power of γ-δ T Cells investors.in8bio.com/static-files/f27cfe0f-d60a-4f95-afac-1741694b0d28 (2023).

  123. McGuirk, J. P. et al. Inb-100: a pilot study of donor derived, ex-vivo expanded/activated γ-δ T cell (EAGD) infusion following haploidentical hematopoietic stem cell transplantation and post-transplant cyclophosphamide (PTCy). Blood 142, 4853 (2023).

    Article  Google Scholar 

  124. Nishimoto, K. P. et al. Allogeneic CD20‐targeted γδ T cells exhibit innate and adaptive antitumor activities in preclinical B‐cell lymphoma models. Clin. Transl. Immunol. 11, e1373 (2022).

    Article  CAS  Google Scholar 

  125. Neelapu, S. S. et al. A phase 1 study of ADI-001: anti-CD20 CAR-engineered allogeneic gamma delta1 (γδ) T cells in adults with B-cell malignancies. Blood 140, 4617–4619 (2022).

    Article  Google Scholar 

  126. Bai, Lu. et al. Effects of IL-2 and IL-15 on the proliferative and antitumor capacities of allogeneic anti-CD20 CAR-engineered γδ T cells in a 3D B cell lymphoma spheroid assay. J. Immunother. Cancer 8, A1–A559 (2020).

    Google Scholar 

  127. Sasse, S. et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: final results of an open-label, randomized, multicenter phase II trial. Leuk. Lymphoma 63, 1871–1878 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. De Gassart, A. et al. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci. Transl. Med. 13, eabj0835 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Bono, J. D. et al. ICT01 plus low dose SC IL-2 produces a robust anti-tumor immune activation in advanced cancer patients (EVICTION-2 Study). J. Immunother. Cancer 11, A715 (2023).

    Google Scholar 

  130. Makkouk, A. et al. Off-the-shelf Vδ1 γ δ T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer 9, e003441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Majzner, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8, 1219–1226 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.F. is supported by NCI R35CA253175, Peter Michael Foundation, and the Prostate Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Fong.

Ethics declarations

Competing interests

L.F. reports research support to the institution from AbbVie, Bavarian Nordic, Bristol Myers Squibb, Dendreon, Janssen, Merck and Roche–Genentech and ownership interests in Actym, Atreca, BioAtla, Bolt, ImmunoGenesis, Nutcracker, RAPT, Scribe and Senti, unrelated to the work here. The other authors declare no competing interests.

Peer review information

Nature Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Badia, M., Chang, R. & Fong, L. γδ T cells as critical anti-tumor immune effectors. Nat Cancer (2024). https://doi.org/10.1038/s43018-024-00798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43018-024-00798-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing