[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NOMPC ion channel hinge forms a gating spring that initiates mechanosensation

Abstract

The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate. This linker acts as a Hookean hinge that is ten times more elastic than the tether, with the linker hinge dictating channel gating and the intrinsic stiffness of the gating spring. Our study shows how mechanosensation is initiated molecularly; disentangles gating springs and tethers, and respective paradigms of channel gating; and puts forward gating springs as core ion channel constituents that enable efficient gating by diverse stimuli and in a wide variety of channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of domain duplications on in vitro NOMPC function.
Fig. 2: Effects of domain duplications on JO neuron CAP responses.
Fig. 3: Effects of domain duplications on gating compliance and gating-spring stiffness.
Fig. 4: Pulling force acting on ARs deforms the LH domain.
Fig. 5: Constraining one-half of the duplicated LH domain by crosslinking cysteine pairs reverts it functionally to a single LH domain.

Similar content being viewed by others

Data availability

Source data can be found in a public repository74. Plasmids and flies generated in this study will be provided on request. The NOMPC.L structure used for the molecular dynamic simulations is accessible at Protein Data Bank (PDB) with accession 5VKQ. Source data are provided with this paper.

References

  1. Hudspeth, A. J., Choe, Y., Mehta, A. D. & Martin, P. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl Acad. Sci. USA 97, 11765–11772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Chalfie, M. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, M., Heo, G. & Kim, S. Y. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat. Rev. Neurosci. 23, 135–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Delmas, P. & Coste, B. Mechano-gated ion channels in sensory systems. Cell 155, 278–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Jin, P., Jan, L. Y. & Jan, Y. N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43, 207–229 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox, C. D., Bavi, N. & Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 29, 1–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howard, J. & Hudspeth, A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc. Natl Acad. Sci. USA 84, 3064–3068 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howard, J. & Hudspeth, A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1, 189–199 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Markin, V. S. & Hudspeth, A. J. Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu. Rev. Biophys. Biomol. Struct. 24, 59–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE. 2004, re4 (2004).

    Article  PubMed  Google Scholar 

  15. Ricci, A. J., Crawford, A. C. & Fettiplace, R. Mechanisms of active hair bundle motion in auditory hair cells. J. Neurosci. 22, 44–52 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kennedy, H. J., Crawford, A. C. & Fettiplace, R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433, 880–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Tobin, M., Chaiyasitdhi, A., Michel, V., Michalski, N. & Martin, P. Stiffness and tension gradients of the hair cell’s tip-link complex in the mammalian cochlea. eLife 8, e43473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Albert, J. T., Nadrowski, B. & Göpfert, M. C. Mechanical signatures of transducer gating in the Drosophila ear. Curr. Biol. 17, 1000–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gillespie, P. G., Dumont, R. A. & Kachar, B. Have we found the tip link, transduction channel, and gating spring of the hair cell? Curr. Opin. Neurobiol. 15, 389–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Christensen, A. P. & Corey, D. P. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8, 510–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hudspeth, A. J. & Gillespie, P. G. Pulling springs to tune transduction: adaptation by hair cells. Neuron 12, 1–9 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-cell tip links. Proc. Natl Acad. Sci. USA 97, 13336–13341 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sotomayor, M., Corey, D. P. & Schulten, K. In search of the hair-cell gating spring: elastic properties of ankyrin and cadherin repeats. Structure 13, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gillespie, P. G. & Müller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, W. & Holt, J. R. The mechanosensory transduction machinery in inner ear hair cells. Annu. Rev. Biophys. 50, 31–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Caprara, G. A. & Peng, A. W. Mechanotransduction in mammalian sensory hair cells. Mol. Cell. Neurosci. 120, 103706 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Araya-Secchi, R., Neel, B. L. & Sotomayor, M. An elastic element in the protocadherin-15 tip link of the inner ear. Nat. Commun. 7, 13458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartsch, T. F. et al. Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing. Proc. Natl Acad. Sci. USA 116, 11048–11056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, Y. Q. et al. Ankyrin is an intracellular tether for TMC mechanotransduction channels. Neuron 107, 112–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Howard, J. & Bechstedt, S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol. 14, R224–R226 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Effertz, T., Nadrowski, B., Piepenbrock, D., Albert, J. T. & Göpfert, M. C. Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nat. Neurosci. 15, 1198–1200 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Yan, Z. et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493, 221–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Liang, X. et al. A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr. Biol. 23, 755–763 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, W. et al. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162, 1391–1403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin, P. et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Argudo, D., Capponi, S., Bethel, N. P. & Grabe, M. A multiscale model of mechanotransduction by the ankyrin chains of the NOMPC channel. J. Gen. Physiol. 151, 316–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, L. et al. Ultrastructural organization of NompC in the mechanoreceptive organelle of Drosophila campaniform mechanoreceptors. Proc. Natl Acad. Sci. USA 116, 7343–7352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hehlert, P., Zhang, W. & Göpfert, M. C. Drosophila mechanosensory transduction. Trends Neurosci. 44, 323–335 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. The push-to-open mechanism of the tethered mechanosensitive ion channel NompC. eLife 10, e58388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, L. E., Song, W., Looger, L. L., Jan, L. Y. & Jan, Y. N. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373–380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Effertz, T., Wiek, R. & Göpfert, M. C. NompC TRP channel is essential for Drosophila sound receptor function. Curr. Biol. 21, 592–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Powers, R. J. et al. Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel. Biophys. J. 102, 201–210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Besch, S. R., Suchyna, T. & Sachs, F. High-speed pressure clamp. Pflügers Arch. 445, 161–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J., Moon, S., Cha, Y. & Chung, Y. D. Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS ONE 5, e11012 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Nadrowski, B., Albert, J. T. & Göpfert, M. C. Transducer-based force generation explains active process in Drosophila hearing. Curr. Biol. 18, 1365–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Veevers, R. & Hayward, S. Methodological improvements for the analysis of domain movements in large biomolecular complexes. Biophys. Physicobiol. 16, 328–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eargle, J. & Luthey-Schulten, Z. NetworkView: 3D display and analysis of protein·RNA interaction networks. Bioinformatics 28, 3000–3001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57, 267–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Cowgill, J. & Chanda, B. Mapping electromechanical coupling pathways in voltage-gated ion channels: challenges and the way forward. J. Mol. Biol. 433, 167104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scheuring, S. Forces and energetics of the canonical tetrameric cation channel gating. Proc. Natl Acad. Sci. USA 120, e2221616120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goretzki, B. et al. Crosstalk between regulatory elements in disordered TRPV4 N-terminus modulates lipid-dependent channel activity. Nat. Commun. 14, 4165 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niu, X., Qian, X. & Magleby, K. L. Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42, 745–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Young, M., Lewis, A. H. & Grandl, J. Physics of mechanotransduction by Piezo ion channels. J. Gen. Physiol. 154, e202113044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karak, S. et al. Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing. Sci. Rep. 5, 17085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zanini, D. et al. Proprioceptive opsin functions in Drosophila larval locomotion. Neuron 98, 67–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Eberl, D. F. & Kernan, M. J. Recording sound-evoked potentials from the Drosophila antennal nerve. Cold Spring Harb. Protoc. 2011, prot5576 (2011).

    Article  PubMed  Google Scholar 

  62. Huang, X., Pearce, R. & Zhang, Y. FASPR: an open-source tool for fast and accurate protein side-chain packing. Bioinformatics 36, 3758–3765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jo, S. et al. CHARMM-GUI 10 years for biomolecular modeling and simulation. J. Comput. Chem. 38, 1114–1124 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Abraham, M. J., Murtola, T. & Lindahl, E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  65. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  67. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  68. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  69. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  70. Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 5, 1055–1076 (1983).

    Article  Google Scholar 

  71. Steinbach, P. J. & Brooks, B. R. New spherical-cutoff methods for long-range forces in macromolecular simulation. Comput. Chem. 15, 667–683 (1994).

    Article  CAS  Google Scholar 

  72. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  73. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  74. Hehlert, P. et al. NOMPC gating spring - data repository. Göttingen Research Online https://doi.org/10.25625/LVUTCE (2024).

Download references

Acknowledgements

We thank Y.-N. Jan and L. Jan for providing nompC.L and AR+AR-nompC.L plasmids, UAS-AR+AR-nompC.L and an anti-NOMPC antibody. C. Dean helped with TIRF microscopy, and S. Pauls and N. Schwedthelm-Domeyer provided technical assistance. This study was supported by the German Science Foundation (grants SFB 889 A1, SPP1680, GO 1092/1-2) to M.C.G. and the Cluster of Excellence MBExC (B.L.d.G. and M.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

M.C.G. initiated this work. P.H. performed molecular biology and cell transfections and ran all the in vivo experiments together with T.E. T.E. performed in vitro patch-clamp recordings and analyzed experimental data together with P.H., B.N., B.R.H.G., D.B. and M.C.G. R.-X.G. and B.L.d.G. carried out and analyzed molecular dynamics simulations. M.C.G. wrote the manuscript together with P.H., T.E., R.-X.G, B.N., D.B. and B.L.d.G., and all authors commented on it and all results.

Corresponding author

Correspondence to Martin C. Göpfert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Expression of GFP-tagged NOMPC variants in Drosophila S2 cells.

a, Protein localization. GFP fluorescence reports cell surface localization for all three variants. n ≥ 100 cells/construct. b, Currents and respective channel numbers in excised outside-out membrane patches. Left: channel number \(N\) per patch deduced by fitting \({p}_{o,\ge 1}\left(P\right)\) (Fig. 1h) with \({Y\left(P\right)=1-\left(1-{p}_{o}\left(P\right)\right)}^{N}\). Middle: respective peak current amplitudes. Right: channel number deduced by dividing the peak current (middle) by the respective single channel current amplitude (Fig. 1d) (n = (n = 7 cells per protein variant except for n = 9 (NOMPC::GFP) and n = 6 (LH+LHCys-NOMPC::GFP)). Both methods yield similar channel numbers. c, Top: respective normalized amplitudes (\(I/{I}_{\max }\)) as function of the stimulus pressure (n = 7 cells per protein variant except for n = 9 (NOMPC::GFP) and n = 6 (AR + AR-NOMPC::GFP)). Solid lines: respective Boltzmann fits. Hatched lines: \({p}_{o}\left(P\right)\) deduced from Fig. 1f by fitting \({p}_{o,\ge 1}\left(P\right)\) with \({Y\left(P\right)=1-\left(1-{p}_{o}\left(P\right)\right)}^{N}\). Bottom: superimposed Boltzmann fits from the top panels and respective offset pressure corresponding to half-maximal current amplitude (shown for \({p}_{o}\left(P\right)\) in Fig. 1g). Compared to the deduced \({p}_{o}\left(P\right)\), the normalized current amplitudes increase less steeply with the stimulus pressure (top), yet, like \({p}_{o}\left(P\right)\), they superimpose for AR + AR-NOMPC::GFP and NOMPC::GFP and are shifted to approximately twice larger pressures for LH + LH-NOMPC::GFP and LH+LHCys-NOMPC::GFP.

Source data

Extended Data Fig. 2 Localization of GFP-tagged NOMPC variants in Drosophila JO neurons.

GFP signals are enhanced with an anti-GFP antibody (cyan), and JO neurons are counterstained with anti-horseradish peroxidase (HRP), which recognizes sugar residues of glycoproteins that are secreted by JO neurons in two bands (h, see inset upper right). The proximal band (arrowhead) demarks the junction between the cilium (c) and the dendritic inner segment (d), and the distal band demarks the ciliary dilation (“cd”) that separates cilium tip and base regions. s: Cell soma. Anti-GFP staining shows that NOMPC::GFP, AR + AR-NOMPC::GFP, and LH + LH-NOMPC::GFP localize to the cilium tip regions, same as native NOMPC (lower panel, stained with the anti-NOMPC antibody αNOMPC-EC16. Scale bars: 20 µm. n = 3 flies/strain.

Extended Data Fig. 3 Elasticities of LH and AR domains.

We simulated two systems separately to calculate the spring constants of the LH+5ARs (a, TMD + LH+5ARs) and the ARs (b, LH+26ARs). Only one subunit is shown in ribbon for clarity, with the transmembrane domain (TMD), the TRP helix, the LH domain and the ARs in gray, cyan, orange and magenta. The ARs on which forces were applied are labelled by green lines. For panel b, we also show the structure of a subunit, which is coloured based on the root-mean-square-fluctuation (RMSF) of the Cα atom of each residue (simulations with a force of 30 kJ/(mol nm) applied to AR4 are used as an example). For additional information, see Methods and Supplementary Table S2.

Extended Data Fig. 4 Correlation between distances of amino acid pairs and LH domain principal components.

Correlation coefficients between the Cα-Cα distances of the three amino-acid pairs that were converted into cysteine pairs to generate LH+LHCys-NOMPC::GFP (Fig. 5 and Extended Data Fig. 5) and the principal components (PCs) of the LH domain in equilibrium (left), pushing (middle) and pulling (right) simulations. Correlation coefficients whose absolute values exceed 0.5 are highlighted in blue. The positions of the respective amino-acid pairs and their Cα-Cα distances in equilibrium (without forcing) and non-equilibrium (with pushing force) simulations are indicated in Fig. 5b.

Extended Data Fig. 5 Transient effects of crosslinking cysteine pairs on in vitro NOMPC function.

a, Representative traces of spontaneous currents recorded before and at different times after application of the crosslinking agent MTS6. b, Corresponding traces of pressure-evoked currents. MTS6 transiently increases spontaneous and pressure-evoked currents of LH+LHCys-NOMPC::GFP carrying three cysteine pairs (I1161C–C1203, K1177C–N1241C, A1212C–H1249C), but not of NOMPC::GFP, LH-LH-NOMPC::GFP, and also LH+LHCys-ctrl-NOMPC::GFP, in which two of the three cysteine pairs of LH+LHCys-NOMPC::GFP (K1177C–N1241C and A1212C–H1249C) are reverted back to single cysteines (K1177C and A1212C). c, Corresponding pressure\(\,\left({\rm{P}}\right)\)-dependent open probability \({{\rm{p}}}_{{\rm{o}}}\left({\rm{P}}\right)\) before (hatched lines) and immediately after (solid lines) MTS6 application (N = 5 cells per construct). For each construct, \({{\rm{p}}}_{{\rm{o}},\ge 1}\left({\rm{P}}\right)={1-(1-{{\rm{p}}}_{{\rm{o}}}\left({\rm{P}}\right))}^{{\rm{N}}}\) (left) and \({{\rm{p}}}_{{\rm{o}}}\left({\rm{P}}\right)\) (right) are shown. MTS6 shifts \({{\rm{p}}}_{{\rm{o}}}\left({\rm{P}}\right)\) to lower pressure amplitudes for LH+LHCys-NOMPC::GFP, but not NOMPC::GFP, LH + LH-NOMPC::GFP, and LH+LHCys-ctrl-NOMPC::GFP. This narrows down the effect to modification of the two cysteine pairs that are present only in LH+LHCys-NOMPC::GFP (K1177C–N1241C and A1212C–H1249C) and that, according to our molecular dynamics (MD) simulations, change distance in response to force (Fig. 5b). At the same time, it shows that this increase arises neither from modification of the cysteine pair that is present in both constructs (I1161C–C1203, which does not change distance in our MD simulations (Fig. 5b)), nor from modification of the two single cysteines K1177C and A1212C. In principle, the effect could arise from modification of the two single cysteines N1241C and H1249C, yet this possibility seems unlikely, not only because MTS6 crosslinks cysteine pairs, but because MTS6 does not randomly impair LH+LHCys-NOMPC::GFP, but shifts its \({p}_{o}\left(P\right)\) to that of NOMPC::GFP.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Video 1

PC1, the ‘core protein.’

Supplementary Video 2

PC1, LH domain only.

Supplementary Video 3

PC2, LH domain only.

Supplementary Video 4

PC3, LH domain only.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hehlert, P., Effertz, T., Gu, RX. et al. NOMPC ion channel hinge forms a gating spring that initiates mechanosensation. Nat Neurosci 28, 259–267 (2025). https://doi.org/10.1038/s41593-024-01849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01849-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing