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Abstract—Lacking of floor plans is a fundamental obstacle
to ubiquitous indoor location-based services. Recent work have
made significant progress to accuracy, but they largely rely
on slow crowdsensing that may take weeks or even months to
collect enough data. In this paper, we propose Knitter that can
generate accurate floor maps by a single random user’s one hour
data collection efforts. Knitter extracts high quality floor layout
information from single images, calibrates user trajectories and
filters outliers. It uses a multi-hypothesis map fusion framework
that updates landmark positions/orientations and accessible areas
incrementally according to evidences from each measurement.
Our experiments on 3 different large buildings and 30+ users
show that Knitter produces correct map topology, and 90-
percentile landmark location and orientation errors of 3 ∼ 5m
and 4 ∼ 6◦, comparable to the state-of-the-art at more than 20×
speed up: data collection can finish in about one hour even by a
novice user trained just a few minutes.

I. INTRODUCTION

Lacking of floor plans is a fundamental obstacle to ubiq-
uitous location-based services (LBS) indoors. Recently some
academic work have made admirable progress to automatic
floor plan construction. They require only commodity mobile
devices (e.g., smartphones) thus scalable construction can be
achieved by crowdsensing data from many common users.
Among others [16], [21], [25], [26], CrowdInside [4] uses
mobility traces to derive the approximate shapes of accessible
areas; realizing that inertial and WiFi data are inherently noisy
thus difficult to produce precise and detailed maps, a recent
work Jigsaw [14] further includes images to generate highly
accurate floor plans.

Despite such progress, these approaches usually require
large amounts of data, crowdsensed from many random users
piece by piece, resulting in long data collection time (weeks or
even months) before maps can be constructed. In this paper,
we propose Knitter, which can construct complete, accurate
floor plans within hours. Even in large complex environments
such as shopping malls, the data collection for a level takes
only about one man-hour’s effort. Instead of crowdsensing the
data from many random users, Knitter requires only one user
to walk along a loop path inside the building to collect small
amounts of measurement data. Knitter is highly resilient to
low user skill and thus data quality: with just a few minutes’
practice, a novice user can collect data that produce maps at
quality on par to well trained users.

The greatly improved speed and resilience using sparse and
noisy data are made possible by several novel techniques. A
single image localization method extracts high quality relative
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spatial relationship and geometry attributes of indoor places
of interests (POIs, such as store entrances in shopping malls,
henceforth called landmarks). This greatly reduces the amount
of data needed. Image-aided calibration and optimization-
based cleaning methods correct noises in user trajectories,
and align them on a common plane. Thus outliers causing
significant skews are identified and filtered. Instead of making
a single and final “best” guess of map layout [14], which be-
comes accurate only after large amounts of data, Knitter takes
multi-hypothesis measurements. It accumulates measurement
evidences upon each data sample, updates parallel possibilities
of map layouts incrementally, and chooses those supported by
the strongest evidences. Collectively these techniques enable
Knitter to produce complete and accurate maps using sparse
and noisy data from novice users. Specifically, we make the
following contributions:

• We develop a novel localization method that can extract
the user’s relative distance and orientation to a landmark
using a single image, and produce multiple hypotheses
about the landmark’s geometry attributes.

• We devise image-aided angle and stride length cali-
bration methods to reduce errors in user trajectories,
and optimization-based discrepancy minimization to align
multiple trajectories along the same loop path, thus de-
tecting and filtering outliers.

• We propose an incremental floor plan construction frame-
work based on dynamic Bayesian networks, and design
algorithms that update parallel map layout possibilities
using evidences from measurement data, while tolerating
inevitable residual noises and errors.

• We devise a landmark recognition algorithm that
combines complementary data to determine measure-
ment/landmark correspondence, and methods for accessi-
ble area confidence assignment under sparse data, neither
fully addressed in previous work.

• We develop a prototype and conduct extensive experi-
ments in three kinds of large (up to 140×50m2), typical
indoor environments: featureless offices and labs, and
feature-rich shopping malls, with 30+ users. We find that
Knitter achieves accuracy comparable to the state-of-the-
art [14] (e.g., 90-percentile position/orientation errors at
3 ∼ 5m and 4 ∼ 6◦), with more than 20× speed up that
costs only one hour’s efforts of a single user, and the
reconstructed map can be used directly for localization.

II. OVERVIEW

Knitter takes several components in system measurements,
map fusion framework, and compartment estimation to pro-
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Fig. 1. Knitter contains several components to produce complete and accurate
maps by a single random user’s one hour data collection efforts.

duce the final map (shown in Figure 1) .
Three system measurement techniques are devised to pro-

duce inputs to the map fusion framework from sensing data:
1) single image localization extracts a landmark’s geometry
information, including its relative orientation, distance to the
user, and its adjacent wall segment lengths from one image;
2) trajectory calibration leverages the image localization re-
sults to reduce user trajectory angle and stride length errors,
then trajectory cleaning quantifies the trajectory quality and
uses alignment and clustering to detect and filter outliers; 3)
landmark recognition combines image, inertial and WiFi data
of complementary strengths to determine which measurement
data corresponds to which landmark, thus ensuring correct map
update. The map fusion framework fuses previous measure-
ment results to create maps under a dynamic Bayesian network
formulation. It represents multiple possible map layouts each
with different estimations of landmark positions as hidden
states, represented by random variables, infers and updates
their probability distributions incrementally, using evidences
upon each additional measurement. The compartment esti-
mation combines evidences from different kinds of measure-
ments to properly assign accessible confidences to cells in an
occupancy grid, such that estimations of compartment (e.g.,
hallways, rooms) shapes and sizes are accurate even with small
amount of data.

III. LOCALIZATION VIA A SINGLE IMAGE

Single image localization estimates the relative distance d
and orientation θ of the user to a landmark in photo (shown
in Figure 2). It also produces multiple hypotheses of the
landmark’s geometry attributes, with a weight (probability)
for each hypothsis’ measurement confidence. Such output is
fed to the map fusion framework. Unlike most vision-based
localization work [19] that relies on image matching to a
database of known landmarks, we use line extraction and do
not need any prior benchmark images.
Pre-processing. First we use Canny edge detector [5] to ex-
tract line segments (Figure 4(c)) from an image (Figure 4(a)).
We cluster them [23] and find the vanishing point (VP) where
the wall/ground boundary line and horizon line intersect, and
obtain its pixel coordinates (u, v).
Estimating θ. Based on projective geometry, we can compute
the relative orientation angle θ of the landmark to the camera
using the vanishing point’s coordinates:

θ = π −mod(arctan(
u− W

2

f
), π) (1)

where W is the image width in pixels, f is the camera’s
focal length in pixels computed from the camera’s parameter
specifications.
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Fig. 4. Extracted horizon line and boundary line on the example image (better
viewed in color). Red circles denote farthest intersection points between
vertical line segments and boundary line.

Estimating d. Assuming the user points the camera down-
wards (or upwards) at an angle α (shown in Figure 3), d can
be computed as:

tanα =
h0
f
, tanβ =

hb
f
, d = hu · cot(α+ β) (2)

where h0 denotes the vertical distance of the horizon line to
the image center, derivable from (u, v), hb the vertical distance
from the image center to the boundary line (both marked in
Figure 4(c)), and hu is the actual camera height which can
be approximated using the user’s height (input by the user or
estimated).

Computing hb in Equation 2 requires us to identify the floor-
wall boundary line (Figure 4(c)). This is not straightforward
because there may exist many other lines that are parallel
to the true boundary. Reliably distinguishing them from the
real one is difficult. Thus we develop a method that produces
multiple hypotheses of floor-wall boundary so the correct one
is included with high probability.

We first generate an orientation map [17] (Figure 4(b))
where the orientation of each surface is computed and its
pixels colored accordingly. Given a floor-wall boundary candi-
date li, we compute the fraction of wall and floor pixels with
consistent orientations as the weight:

wli =
S+
floor + S+

wall

Sallfloor + Sallwall
(3)

where S+
floor and S+

wall denote the floor/wall pixel areas whose
orientations conforming to li (i.e., above li are walls facing
sidewards and below li are floors facing upwards), Sallfloor and
Sallwall the respective total pixel areas. The correct candidate
should have the best consistency, thus greatest weight.
Estimating (wL, wR). Along a boundary line, we detect
intersection points with vertical line segments. The left- and
right-farthest intersection points are identified in Figure 4(c),
and their horizontal pixel distances (wpL, w

p
R) to the image

center are transformed into left and right wall segment lengths
(wL, wR) based on projective geometry:

wL,R =
d · sin(arctan(

wp
L,R

f ))

sin(θ ∓ arctan(
wp

L,R

f ))
(4)

Now we have multiple hypotheses, each having a boundary
line, user distance/angle, and two wall segment lengths, with a
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Fig. 5. Trajectories from (a) ground truth with 6 photo-takings; (b) gyroscope
based [22], [29]; (c) phone attitude [30]; (d) image-aided angle calibration.

weight (probability). Detailed evaluations (Section VIII) show
that this localization method generates quite small errors (<
1m) even at remote distances (> 10m).

IV. TRAJECTORY CALIBRATION AND CLEANING

Accurate user trajectories from inertial data are critical in
floor plan construction. In Knitter, the user walks along a
closed loop path multiple times, taking landmark photos and
collecting inertial data. Each loop may take about 10 minutes.
Significant errors may accumulate during the long walk, and
frequent stops to take landmark photos may create severe
inertial disturbances, both resulting in deformed, inaccurate
trajectories. We must be able to rectify such errors.

A. Trajectory Calibration
We tested two trajectory construction methods: a gyroscope

based (Zee [22] and UnLoc [29]) and a recent phone attitude
one (A3 [30]). Although the step counts are relatively accu-
rate, neither produces satisfactory trajectories due to walking
direction errors. Figure 5(b) and 5(c) show their results for
a 5-minute walk (Figure 5(a)). The main reasons are: 1) the
gyroscope has significant drifts over long walking periods; 2)
during long, straight walk, there are few calibration opportuni-
ties of similar changes in compass and gyroscope as required
in A3 [30]; 3) strong electromagnetic disturbances (e.g., server
rooms [15]) can cause false “calibrations.” We propose image
aided methods to calibrate the angles and stride lengths, thus
accurate walking direction and trajectories (Figure 5(d)).
Image-aided Angle Calibration. Since gyroscopes are known
to have linear drifts [30], we leverage “closed loops” to
estimate an average gyroscope drift rate δ. After finishing a
loop, the user returns to the starting area and takes a second
photo of the first landmark. Using single image localization,
we compute two angles θ1, θ2 based on Equation 1 for both
images of that landmark. Their difference ∆θ = θ1 − θ2 is
the orientation angle change. Since the user may not return
perfectly to the starting point, this will cause an additional
change in user orientation, which can be measured by the
difference of the gyroscope’s “yaw” between the two images,
denoted as ∆g. The rate δ and calibrated angle g∗t are
computed as:

δ =
∆g + ∆θ

T
, g∗t = gt + δ · t (5)

where T is the time between taking the two images. We find
this method is not affected by electromagnetic disturbances; it
always achieves accurate and robust angle calibration (∼ 5◦

errors at 90-percentile).
Image-aided Stride Length Calibration. We leverage the
closed loop to calibrate the stride length that may change in
different regions, e.g. larger in wide and open hallways [4].
Our localization method can compute the user’s relative lo-
cation to the first landmark, thus the location change before
and after the loop can be computed as a vector ~v pointing
from the start to the end location. We compensate each point

(a) (b) (c) (d)
m m m m

Fig. 6. (a) raw trajectory for a closed loop; (b) angle calibration only; (c)
stride length calibration only; (d) both calibrations.

at time t on the trajectory with ~v · t/T to calibrate stride
length errors. Figure 6 shows that both angle and stride length
calibrations are needed to produce an accurate closed loop
trajectory (Figure 6(d)).

B. Trajectory Cleaning
Calibration only rectify trajectories with small errors, but

not outliers. We conduct the following three steps to detect
and filter out such outliers: loop screening, loop alignment,
and outlier removal.
Loop Screening. We use the “gap”, the distance between the
starting and ending locations of the angle-calibrated loop for
preliminary screening. Since the user returns to the starting
area, ideally the gap should be 0 after image compensation. A
lower quality loop has a larger gap. Given multiple trajectories,
we compute the standard deviation σ of the calibration shift
vector’s length |~v| normalized over the size of the trajectory,
and remove those with |~v| beyond 3σ. 1

Loop Alignment. Multiple trajectories must be placed within
the same global coordinate system. However, the trajectories
can not overlap perfectly with each other. Each time the exact
path may differ slightly within the same hallways or isles,
so do the stride lengths. Thus the trajectories have slightly
different shapes and possibly scales.

Without loss of generality, we consider how to place a
second trajectory with respect to an existing one. Initially, we
pick the one with the smallest gap as a reference loop, and use
landmark recognition (Section VI) to detect which landmark ci
on the second loop corresponds to landmark i on the reference
loop. This addresses situations where the user takes photos
of slightly different sets of landmarks in each loop (due to
negligence or imperfect memory). Then we translate, rotate
and scale the second one to achieve “maximum overlap” with
the first one, as defined by minimizing the overall pairwise
distances of corresponding landmarks:

{φ∗, O∗, s∗} = argmin
φ,O,s

N∑
i=1

‖s ·R(φ) ·(M2
ci−O)−M1

i ‖2 (6)

where M1
i = X1

i + Z1
i and M2

ci = X2
ci + Z2

ci denote
the coordinates of the ith landmark in the reference loop
and the corresponding landmark ci in the second loop, X1

i
and X2

ci are the coordinates of photo taking locations of
them, Z1

i and Z2
ci are the relative locations from the user

to the landmark (from single image localization). {φ,O, s}
denote the rotation, translation and scale factors to the second

trajectory, and R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
is the rotation

matrix. A simple greedy search for an initial solution followed
by iterative perturbation can find the approximate solutions

1According to Chebyshev’s Theorem, this removes those trajectories with
extreme errors beyond 88.9% of all loops.
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for the three parameters. Each additional trajectory is placed
similarly within the common coordinate system. 2

Outlier Removal. After all trajectories and landmark sets
are placed on the same coordinate system, we identify
the common subset of sm landmarks across all loops. We
represent those in loop k with a multi-dimensional vector
(mk

s1 , ...,m
k
sm), where mk

si is landmark si’ location, and com-
pute the Euclidian distance between each two vectors. Then
we use a density-based clustering algorithm DBSCAN [10]
to eliminate outlier loops: vectors are “reachable” to each
other if the distance is within an empirically decided threshold
ε = 0.8m, those not reachable from any other vector are
detected as outliers, and respective loops removed.

V. MAP FUSION FRAMEWORK

With the image measurements in Section III and motion
trajectory in Section IV, we need to estimate landmarks’
positions and orientations in the global coordinate system. To
this end, we use a Dynamic Bayesian Network framework
to fuse the extracted information from previous measurement
algorithms to build maps incrementally.

A. Dynamic Bayesian Network
We formally represent different states in the floor plan

construction process as random variables, and denote their
dependence using arrows (shown in Figure 7). We assume
time is slotted. At each time t, xt denotes the user pose (i.e.,
camera/phone coordinates and orientation); ut is the control
including the walking distance and heading direction that alter
the user pose from xt−1 to xt; zt is measurement of the
landmark by the user (e.g., relative distance d and angle θ);
mct are the coordinates and orientation of the landmark being
measured, ct = j (j = 1, ..., N ) is the index of this landmark
as detected by landmark recognition (Section VI).

In the above, ut and zt are observation variables that can be
measured directly from sensors, while xt and mj are hidden
variables that must be computed from observation ones. These
variables are represented by probability distributions. Given
control signal u1:t (shorthand for u1, ..., ut) and measurements
z1:t, the goal is to compute the posterior (i.e., conditional)
probability of both landmark positions m1:N and user poses
x1:t, i.e. p(x1:t,m1:N |u1:t, z1:t).

B. Particle Filter Algorithm
We use a particle filter algorithm to compute the above user

poses and landmark attributes incrementally. We maintain a
collection of K “particles.” Each particle k (k = 1, ...,K)
includes a different estimation of:

2We also tried to place each trajectory w.r.t. all previous ones but find the
much increased complexity brought only marginal improvements. Thus we
use the much simpler method as in Eqn 6.

Movement 

update

Measurement

Landmark 

update

User pose

Landmark state 

Previous

Current
Current

Previous

Fig. 8. A current user pose is computed based on the previous pose and
control signal. Then a landmark’s state is updated using a measurement from
the new user pose.

• user pose xt: user’s coordinates (x, y) and heading direc-
tion ϕ,

• each landmark’s mean µ and covariance Σ of its coordi-
nates and orientation (µx, µy, µφ), assumed multivariate
Gaussian distribution,

• two adjacent wall lengths (wL, wR) of each landmark.
At each time slot, we perform 5 steps to update the states in
each particle k.

1. Movement Update: given the previous user pose xt−1 at
time t−1 and recent control ut = (v, ω) where v is the moving
speed and ω the heading direction (obtained from trajectory
measurement algorithms in Section IV), the destination is
computed by dead reckoning. The current pose xt is computed
by picking a sample from a multivariate Gaussian distribution
of many possible locations around the destination (Figure 8):

x
[k]
t ∼ p(xt|x

[k]
t−1, ut) (7)

2. Landmark Recognition: a new measurement zt of a
nearby landmark mct is made at t, and ct is identified as j
(j ∈ {1, ..., N}) by the landmark recognition algorithm (to
be elaborated in Section VI). If mj is never seen before,
a new landmark is created, with coordinates and orientation
computed based on user pose xt and relative distance, angle
in zt.

3. Landmark Update: If mj is a known landmark, its states
are updated. Assuming the most recent attributes of landmark
mj are µt−1

j and Σt−1
j , where µt−1

j = (µx, µy, µϕ) are its
coordinates and orientation in the global coordinate system,
and Σt−1

j the corresponding 3× 3 covariance matrix.
• Prediction. Given a user pose xt = (x, y, ϕ) at time t and
mj’s attributes µt−1

j at t − 1, a measurement prediction
ẑt about the relative distance and angle between the user
and mj can be made as:

ẑt =

(
d̂

θ̂

)
=

( √
(µx − x)2 + (µy − y)2

µϕ − ϕ

)
(8)

simply their differences in coordinates and orientations.
• Observation. Given mj’s image, the localization algo-

rithm (Section III) generates multiple hypotheses of
(d, θ), each with a weight. We pick one hypothesis at
probabilities proportional to their weights as the actual
measurement zt = (d, θ)T .

• Extended Kalman Filter (EKF) [9]. It linearizes the
measurement model (Eqn. 8) such that measurement
errors become linear functions of noises in user pose
and landmark attributes. Then it computes the “optimal”
distribution of hidden variables (e.g, landmark attributes)
given observations, such that the discrepancies between
predicted and actual measurements are minimized.
Step 1: The Kalman gain is computed as:

Q = HΣt−1
j HT +Qt,K = Σt−1

j HTQ−1 (9)



where Qt is a 2×2 covariance of Gaussian measurement
noises in (d, θ), H is the 2×3 Jacobian matrix of ẑt, with
elements partial derivatives of (d̂, θ̂) w.r.t. (µx, µy, µϕ).
Step 2: The mean and covariance of mj are updated as:

µtj = µt−1
j +K(zt − ẑt),Σtj = (I −KH)Σt−1

j (10)

where I is a 3× 3 unit matrix.
Figure 8 shows that after the update, the uncertainties (quanti-
fied by covariances represented in oval sizes) in a landmark’s
location and orientation become less and the distributions
become more concentrated. To simplify the wall length esti-
mation, we use an weighted average of (wt−1

L (t− 1) +wL)/t
as the updated wall length wtL for landmark mj (wR computed
similarly). We find the results are sufficiently accurate.

4. Weight Update: we assign each particle k a weight that
quantifies the probability (Eqn. 11) that the actual measure-
ment zt can happen under the user pose x

[k]
t and updated

landmark states (µtj ,Σ
t
j). The larger the probability, the more

likely that the estimated user pose and landmark attributes are
accurate.

w[k] = p(zt|x[k]t ,mj)

= |2πQ|− 1
2 exp{−1

2
(zt − ẑt)TQ−1(zt − ẑt)}

(11)

Under Gaussian noises and linearization approximation [20],
the weight can be computed in closed form of the actual
measurement zt and its prediction ẑt. A prediction ẑt closer
to actual zt leads to a larger weight.

5. Resampling: After the weights for all particles are
computed, a new set of particles is formed by sampling K
particles from the current set, each at probabilities proportional
to their weights. The above steps are repeated on the new set
for the next time slot.

VI. LANDMARK RECOGNITION

Landmark recognition detects which landmark is measured
in the current data sample: a new one never seen before, or an
existing one already known. Incorrect recognition will cause
wrong updates, thus possibly large errors or even incorrect
map topology. We take advantage of multiple sensing modali-
ties of complementary strengths for robust recognition: images
capture the appearances; poses depict the spatial relationships,
and WiFi identifies radio signatures.

Image Based Recognition. Given a test image, we extract
its features and compare with those from images of existing
landmarks, then determine whether it is a new or existing
one. We use a standard image feature extraction algorithm
[18] to generate robust, scale-invariant feature vectors. Then
we identify matched feature vectors to those from an exist-
ing landmark’s image. The image similarity Simagej to each
existing landmark j is computed as the fraction of matching
ones among all distinct feature vectors in the test image and
landmark j’s image.

Wi-Fi Based Recognition. Although image features distin-
guish complex landmarks well (e.g. stores and posters), they
are ineffective in homogeneous environments such as office
and lab, where doors have very similar appearances. We use
the cosine distance (i.e. the cosine value of the angle between
two vectors of WiFi signatures) to quantify the radio signature
similarity Swifij between the test data and landmark j’s data.

Pose Based Recognition. Given the user pose xt and land-
mark attributes (e.g., coordinates and orientation), a relative
distance/orientation ẑt can be predicted from Equation 8. The
correct landmark j should make this prediction very close to
the actual measurement. Based on this intuition, we use the
conditional probability that zt can occur given xt and mj’s
location/orientation as the metric Sposej , which is exactly the
same as weight w[k] in Equation 11.

Aggregate Similarity. An aggregate similarity is computed
as Simagej ·Swifij ·Sposej . Since images, WiFi and inertial data
are independent from each other, the probability the landmark
being j is proportional to the product of the three similarity
scores. The product form implies that a small score in any of
the three is a strong indication of incorrect match, and the true
match would have high scores in all the three.

Using the shopping mall as an example, we observe that
the recognition using any individual modality can fail: e.g.,
pose/WiFi for nearby landmarks, and image for glass walls
or similar appearances. Aggregating them, however, achieves
almost perfect recognition (more results in Section VIII).

VII. COMPARTMENT ESTIMATION

Besides landmarks, a complete floor plan includes also
accessible compartments such as hallways and rooms. A
commonly adopted technique is occupancy grid mapping [27]:
divide the floor into small cells and accumulate evidence
on each cell’s accessibility to identify compartments. While
existing work [4], [14] uses plenty of trajectories, we have
only a handful, too sparse to infer accessible areas directly.
We make two adaptations to compensate data sparsity: 1)
instead of a fixed confidence in cells, we spread attenuating
confidences away from trajectories and detected walls; 2) we
leverage regions between the camera and landmarks to infer
large open regions.

Hallway and Room Shapes. Since only a few trajectories
are gathered, they are too sparse to cover all accessible areas.
We assign each cell a confidence that increases as it gets closer
to a nearby trace or wall segment, because cells closer to traces
or walls are more likely accessible. Areas traversed by multiple
traces will accumulate more confidence, thus more likely to
be accessible. We use a closed loop walking inside each room
to reconstruct its shape, and leverage landmark recognition to
associate such traces with respective rooms and place their
contours on the map.

Large Open Regions. Large open regions (e.g., lobbies)
need many traces to cover its cells. We leverage the images to
infer their sizes. Since the user needs to ensure the landmark
is not occluded by obstacles, the region between the camera
and the landmark is usually accessible. Thus we compute the
triangle region between the camera and landmark (including
adjacent wall segments), and assign a fixed confidence to all
cells in this area.

VIII. PERFORMANCE EVALUATION

A. Methodology
We use iPhone 5s to collect inertial and image data, and

Samsung Galaxy S II for WiFi scans. 3 We define landmarks
as store/room entrances, and conduct experiments in three

3iOS public API does not give WiFi scan results.
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environments: a 90 × 50m office, a 80 × 50m lab building
and a 140×50m shopping mall, with 16, 24, 18 doors/posters
as landmarks respectively.

We evaluate Knitter’s resilience with three user groups: ded-
icated users who are well trained (i.e., ourselves); 15 novice
users who spend 5 min practicing data collection following
two simple guidelines: 1) take images from medium distances
and angles (e.g., ∼5 meters, ∼ 45◦), with the landmark at
the center; 2) during walking, hold the phone steady; and 15
untrained users who may not follow the guidelines. Feedback
from trained ones suggest the two guidelines are easy to follow
in practice.

B. Evaluation of Individual Components
Image Measurements. We first evaluate the accuracy of

user locations relative to the landmark, i.e., the extracted
distance d and angle θ in Section III. Figure 9(a) and Fig-
ure 9(b) show the distribution of angle and distance errors
from images in three environments. We observe that the angle
measurement errors are around 5◦, and that of distance within
1m, both at 80-percentile. The maximum angle and distance
errors are about 94◦ and 2.2 meters (due to incorrect floor-wall
boundary detection). The results show that image extraction in
general has high accuracy, but large outliers are possible. Thus
we select the top 3 candidates for floor-wall boundary, and
compute respective distances/angles, wall segment lengths and
weights to form multiple hypotheses as input to map fusion.

Trajectory Angle Calibration. We compare the image-
aided calibration method against raw compass or gyroscope
readings, and a recent phone attitude A3 [30] method. We
perform experiments in two environments with little/strong
magnetic disturbances, both for an 8-minute walking with
multiple turns and images.

Figure 10(a) shows the angle error CDF with little mag-
netic disturbances. We observe that both A3 and image-aided
calibration achieves accurate angle estimations (∼ 5◦ at 90-
percentile, maximum 8◦). Raw gyroscope readings (curve
omitted due to space limit) suffer linear drifts and reach 32◦

angle errors after the 8-minute walk, and compass has around
10◦ at 90-percentile.

However, when magnetic disturbances are strong (e.g., 90-
percentile compass errors around 20◦ in Figure 10(b)), the
errors from A3 increases (∼ 12◦ at 90-percentile, maximum
17◦) due to frequent and strong disturbances thus incorrect
calibrations. The image-aided method remains unaffected and
still achieves accurate angle estimation. This demonstrates the
robustness of the image-aided calibration method in different
environments.

Landmark Recognition. Table I shows the landmark recog-
nition accuracy for 5 loops’ data in all three environments.
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Fig. 10. Angle errors without and under strong magnetic disturbances.
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Fig. 11. Landmark placement errors with different number of loops data.

We observe that image-based recognition works well in the
mall, but completely fails in office or lab because the land-
marks (e.g., doors) appear almost the same. The results after
aggregating all valid modalities are 100%, 95.8%, and 100%,
proving their complementary strengths.

TABLE I
LANDMARK RECOGNITION ACCURACY

Office building Lab building Shopping Mall
Image – – 91.7%
WiFi 89.1% 87.5% 79.2%
Pose 100% 86.2% 86.1%

All sensors 100% 95.8% 100%

C. Map Fusion Framework

Landmark Update Performance. Figure 11 shows the
changes in maximum, mean and minimum landmark orienta-
tion and location errors as more loops’ data are used for office
(the other two are similar). We observe that more data reduce
errors: e.g., the maximum errors drop from 9.4◦ to 4.3◦, and
4.3m to 2.7m. Also 3 loops seem sufficient: the mean errors
(3◦ and 1.7m) do not further improve much. Thus we do not
need many loops in each environment.

Untrained, Novice and Dedicated Users. The final orien-
tation and location errors of landmarks from untrained users
are shown in Figure 12, before (Figure 12(a)(e)) and after
(Figure 12(b)(f)) trajectory cleaning (TC). Figure 12(c)(g)
show the final results for novice users, and Figure 12(d)(h)
show those for dedicated users. We make several observations:
1) untrained users have much larger errors (Figure 12(a)(e)),
e.g., 4◦ ∼ 12◦ and 5 ∼ 7m errors at 90-percentile before
trajectory cleaning. 2) Trajectory cleaning is quite effective for
both untrained and novice users. E.g., it cuts down orientation
errors by 6◦ and location errors by 2m for untrained users
at 90-percentile (Figure 12(b)(f)). 3) after trajectory cleaning,
novice users (Figure 12(c)(g)) achieve accuracies comparable
to dedicated users (slightly higher 4◦ ∼ 6◦ vs. 3◦ ∼ 5◦ and
3 ∼ 5m vs. 2 ∼ 4m at 90-percentile), and untrained users
have about 2◦ and 2m more in maximum error.
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Fig. 12. Final landmark orientation and location errors for untrained, novice and dedicated users. (a)(b)(e)(f) for untrained users before (1st column) and
after (2nd column) trajectory cleaning (TC). (c)(g) for novice users, and (d)(h) for dedicated users.
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Fig. 13. Landmark orientation and location errors using top hypothesis only.

Examination shows that larger errors from untrained users
are mainly caused by careless or impatient data collection,
e.g., not holding the phone steady, swinging the phone,
changing stride lengths suddenly, and taking photos under
extreme bright/dark lights or with motion. While novice users
exhibit more care and their data have better quality, thus
achieving results comparable to dedicated users. This shows
the resilience of Knitter: a novice user with a few minutes’
training can produce quality maps.

Multi-hypothesis Measurement. Although the image mea-
surement is shown to be quite reliable, incorrect boundary
line can cause occasional large errors. Figure 13 show the
errors using top hypothesis only. Compared to Figure 12
where all hypotheses are used, the orientation errors increase
significantly (e.g., maximum from 6◦ to 28◦), so do location
errors (especially for the mall, maximum from 4m to 8m).
Due to many visual disturbances (e.g., decoration strips on the
floor, glass windows and doors) in complex environment like
malls, incorrect boundary lines can become the top hypothesis
and cause large outliers. In simpler environments like office,
image extraction is more robust. Thus errors do not increase
as much when only the top hypothesis is used.

D. Map Overall Shapes
The reconstructed maps from 5 loops’ data gathered by

novice users and their respective ground truth floor plans
are shown in Figure 14. We can see they match the ground
truth quite well. To quantify how accurate the shape of a
reconstructed map is, we overlay it onto its ground truth to

achieve the maximum overlap by rotation and translation. We
define precision, recall and F-score to measure the degree of
overlap:

P =
Sre ∩ Sgt
Sre

, R =
Sre ∩ Sgt
Sgt

, F =
2P ·R
P +R

, (12)

where Sre denotes the size of reconstructed map, Sgt that of
its ground truth, and Sre ∩ Sgt that of the overlapping area.

Table II shows the precision, recall and F-score of the
three maps. We observe that Knitter achieves high precisions
around 85 ∼ 90% for all three buildings, high recalls for lab
(around 85%), and high F-scores for office and lab around
86%. Recalls are lower than precision (especially the mall)
due to small amounts of trajectories, large open regions and
unreachable room spaces when walking. We also evaluate the
overall shape of maps using data collected by ourselves, and
results are similar with slight increase of 3 ∼ 5% in precision,
recall and F-score. These prove that novice users’ data can
construct maps on par to dedicated users, and approximate
the shapes of ground truths very well.

TABLE II
SHAPE EVALUATION OF FLOOR PLANS

Precision Recall F-score
Office building 89.29% 82.62% 85.83%
Lab building 87.73% 85.51% 86.61%

Shopping mall 84.21% 74.30% 78.95%

E. Comparison with Jigsaw
We compare the reconstructed map of Knitter to that of

Jigsaw [14], a latest work. Knitter explores a lightweight
localization method that requires only one image; it combines
multiple sensing modalities to recognize landmarks, and uses
Bayesian Networks to incrementally update the map upon each
data sample.

In contrast, we find several limitations of Jigsaw. 1) Jigsaw
uses Structure from Motion [3], a compute-intensive technique
that requires over 100 photos per landmark, thus taking long
time and intensive human efforts to collect. 2) It assumes
landmarks with distinctive appearances to construct the “point



10m

90×50m

(a) Office building

10m

80×50m

(b) Lab building

10m

140×50m

(c) Shopping mall
Fig. 14. Reconstructed and ground truth floor plans for the office, lab, and mall.
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cloud”, which is not applicable in visually homogeneous
environments such as office and lab, and it assumes perfect
landmark recognition (by image matching [18] or humans).
3) Its maximum likelihood optimization requires many con-
straints from large amounts of data.

We compare the reconstruction performance of Knitter and
Jigsaw for the mall only (because SfM [3] does not work well
in office/lab). Since crowdsensing may take long time (weeks
or longer) and high expenses to collect large quantities of data,
we gather the data by ourselves. It takes us about 21 man-
hours to collect the needed data (over 2, 400 images, about
200 hallway and room traces). Then we manually associate
images to respective landmarks to ensure perfect landmark
recognition. Table III summarizes the comparison results.

TABLE III
COMPARISON WITH JIGSAW

Jigsaw Knitter
Effectiveness Only mall Office, lab, mall

#Images/landmark 150 1 ∼ 5
Data collection 21 man-hours 1 man-hour

Orientation accuracy 4◦ 4◦

Location accuracy 2m 3 ∼ 4m

We observe that Knitter achieves the same orientation
accuracy (4◦ at 80-percentile) as Jigsaw, and slightly higher
location errors (3 ∼ 4m vs. 2m at 80-percentile) which do not
constitute too big a challenge for customers because stores
are separated much farther away. However, Knitter requires
about only 1 man-hour to collect 5 loops’ data, only 5% that
of Jigsaw’s 21 man-hour efforts. The batch optimization in
Jigsaw is also susceptible to outliers. We find sometimes a
single large outlier can skew landmark locations by over 10m.

The comparison shows advantages of Knitter: lightweight
algorithms speeding up data collection by more than 20×;
trajectory cleaning ensuring data quality from novice users; a
multi-hypothesis, incremental map fusion scheme for accurate
map updates and tolerance of residual errors; reliable landmark
recognition based on multi-modality sensing.

F. Miscellaneous
Reconstructed Maps for Localization. One major usage

for reconstructed floor plans is to pinpoint user locations on

maps. We select 80 random test locations in each environment;
users stand at each test location and take a photo of the
closest landmark. During localization process, first we collect
the inertial data, WiFi signatures and images to recognize the
landmark, then employ our single image localization algorithm
(Section III) to compute the user’s relative location to the
landmark.

Figure 15 shows CDFs of the relative position errors (dis-
tance between the computed and true relative locations to
the correct landmark) in all three environments. For practical
purposes such as navigation, accurate relative locations to a
correct landmark is sufficient to produce proper routes on
the map. We observe that the 90-percentile position errors
are around 2.0m, 2.8m and 2.3m in office, lab and mall,
respectively. The large errors in lab are due to landmark
recognition mistakes, since its landmarks (e.g., doors) have
similar appearances and are close to each other. The mall has
almost perfect recognition but larger sizes, thus intermediate
errors. Although not yet a full-fledged solution, the above
demonstrates the potential of reconstructed maps for local-
ization.

Number of Particles. More particles in general improve
the mapping accuracy but increase computing time. Figure 16
shows that the average errors decrease slightly (from 1.2m/3◦

to 1.1m/2◦) and become stable after 1000 particles. 4 The
computation time increases from 54s with 100 particles to
292 seconds with 1000 particles for 5 loops update, still very
small. This shows even with small number of particles we can
achieve accurate results.

Energy. We use Monsoon Power Monitor [2] and find that
one-time image-taking plus WiFi-scan cost around 25 Joules.
For a typical indoor environment with 20 landmarks, the 20
images and 20 WiFi scans at photo locations cost 500 Joules.
Transmitting all data (∼ 5MB for 800× 600 images, inertial
and WiFi data) costs about 5 Joules on WiFi [6]. Compared
to the battery capacity of 21k Joules [1], the data sensing and
transmission consume about 2.4% of the phone’s battery.

IX. RELATED WORK

Indoor Floor Plans. Indoor floor maps is a relatively
new problem in the mobile community. CrowdInside [4] uses
inertial data to construct user trajectories to approximate
shapes of accessible areas. Jigsaw [13], [14] combines vision
and mobile techniques to generate accurate floor plans using
many images. Walkie-Markie [25] identifies when the WiFi
signal strength reverses the trend and uses them as calibration
points to construct hallways. Jiang et. al. [16] detect room and

4The dip in orientation error around 300 ∼ 500 particles is due to some
outliers temporarily filtered out. They are permanently filtered out beyond 900
particles.



hallway adjacency from WiFi signature similarity, and com-
bine user trajectories to construct hallways. MapGenie [21]
leverages foot-mounted IMU (Inertail Measurement Unit) for
more accurate user trajectories. Shin et. al. [26] use mobile
trajectories and WiFi signatures in a Bayesian setting for
hallway skeletons. Sankar et. al. [24] combines smartphone
inertial/video data and manual user recognition to recover
room features and model the indoor scene of Manhattan
World (i.e., orthogonal walls). IndoorCrowd2D [7] generates
panoramic indoor views of Manhattan hallway structures by
stitching images together.

Compared to them, our distinction is fast, accurate, resilient
map construction with a single random user. We produce
maps with qualities comparable to the latest method [14],
and more than 20× speed up. We also propose incremental
map construction utilizing multi-hypothesis inputs and robust
landmark recognition, which are suitable for sparse data.

Vision-based 3D Reconstruction. Structure from Mo-
tion [3] is a famous technique for scene reconstruction. It
creates a “point cloud” form of object exterior using large
numbers of images from different viewpoints. iMoon [8] and
OPS [19] use it for navigation and object positioning.

Indoor floor plan is essentially a 2D modeling problem that
requires reasonably accurate sizes, shapes of major landmarks,
but not uniform details everywhere, which is the strength of 3D
reconstruction. Compared to them, our focus is not on vision.
We carefully leverage suitable techniques for a novel local-
ization method using a single image, thus deriving landmark
geometry attributes. We leverage much lighter weight mobile
techniques to process inertial and WiFi data for reasonably
accurate floor maps with much less data and complexity.

SLAM (Simultaneous Localization And Mapping) esti-
mates the poses (usually 2D locations and orientations) of
the robot and locations of landmarks (mostly feature points
on physical objects) in unknown environments. Some recent
work [11], [12], [28] have used sensors in commodity mobile
devices but mostly focus on localization, not map construction.

Compared to them, we must extract information and create
complete maps reliably despite low quality and quantity data
from common users. The precision and variation of sensor
data from commodity mobile devices are far worse than those
from special hardware in robotics. We also need to filter, fuse
fragmented and inconsistent data from random users.

X. CONCLUSION

We propose Knitter, which constructs accurate indoor floor
plans requiring only one hour’s data collection by a single
random user. Compared to the latest work, Knitter creates
maps of similar quality with more than 20× speed up. Its speed
and resilience come from novel techniques including single
image localization, multi-hypothesis input, trajectory calibra-
tion and cleaning methods, and fusion of heterogeneous data’s
results using an incremental map construction framework that
updates map layouts based on measurement evidences. Exten-
sive experiments in three different large indoor environments
for 30+ users show that a novice user with a few minutes’
training can produce complete and accurate floor plans on par
to dedicated users, while incurring only one man-hour’s data-
gathering efforts.

In the future, we plan to investigate methods to measure
the landmarks without distinct or flat facades, and leverage

magnetic signatures and WiFi prorogation models to improve
the recognition accuracy.
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