
BatTracker: High Precision Infrastructure-free Mobile Device
Tracking in Indoor Environments

Bing Zhou
ECE Department, Stony Brook University

Stony Brook, New York
bing.zhou@stonybrook.edu

Mohammed Elbadry
CS Department, Stony Brook University

Stony Brook, New York
mohammed.salah@stonybrook.edu

Ruipeng Gao
School of Software Engineering, Beijing Jiaotong

University
Beijing, China

rpgao@bjtu.edu.cn

Fan Ye
ECE Department, Stony Brook University

Stony Brook, New York
fan.ye@stonybrook.edu

ABSTRACT
Continuous tracking of the device location in 3D space is a popular
form of user input, especially for virtual/augmented reality (VR/AR),
video games and health rehabilitation. Conventional inertial based
approaches are well known for inaccuracy caused by large error
drifts. Computer vision approaches can produce accuracy tracking
but have privacy concerns and are subject to lighting conditions
and computation complexity. Recent work exploits accurate acous-
tic distance measurements for high precision tracking. However,
they require additional hardware (e.g., multiple external speakers),
which adds to the costs and installation efforts, thus limiting the con-
venience and usability. In this paper, we propose BatTracker, which
incorporates inertial and acoustic data for robust, high precision
and infrastructure-free tracking in indoor environments. BatTracker
leverages echoes from nearby objects and uses distance measure-
ments from them to correct error accumulation in inertial based
device position prediction. It incorporates Doppler shifts and echo
amplitudes to reliably identify the association between echoes and
objects despite noisy signals from multi-path reflection and clut-
tered environment. A probabilistic algorithm creates, prunes and
evolves multiple hypotheses based on measurement evidences to
accommodate uncertainty in device position. Experiments in real
environments show that BatTracker can track a mobile device’s
movements in 3D space at sub-cm level accuracy, comparable to the
state-of-the-art infrastructure based approaches, while eliminating
the needs of any additional hardware.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys’17, November 6–8, 2017, Delft, The Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5459-2/17/11. . . $15.00
https://doi.org/10.1145/3131672.3131689

KEYWORDS
device tracking, mobile sensing, acoustics, infrastructure-free

ACM Reference Format:
Bing Zhou, Mohammed Elbadry, Ruipeng Gao, and Fan Ye. 2017. BatTracker:
High Precision Infrastructure-free Mobile Device Tracking in Indoor Envi-
ronments. In Proceedings of 15th ACM Conference on Embedded Networked
Sensor Systems (SenSys’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3131672.3131689

1 INTRODUCTION
Tracking the continuous movements thus locations of a device in
an indoor space (e.g., part of a room area, or in front of a TV/game
console) is a form of human-computer interaction, popular in many
applications including virtual/augmented reality (VR/AR), video
games and health rehabilitation. Using inertial sensors (e.g., embed-
ded in the device) is the most straightforward approach. However,
they suffer from large drift errors over time [15, 22]. To combat such
errors, additional infrastructure is usually installed. The state-of-
the-art VR systems (e.g., HTC vive [1], Oculus [5]) rely on multiple
base stations or cameras to track users in a small area (HTC vive
recommended playable area is 3.5m2, and Oculus recommends a
maximum playable area of 2.5× 2.5m2 with three-sensor roomscale
setup); they increase the cost by several hundred dollars and re-
quire installation efforts. Some computer vision based approaches
may achieve high tracking accuracy [3, 8, 34]. A representative one,
the Microsoft Kinect [3], leverages a depth sensor with a range
of 0.8 − 4m. However, they require a visually distinct target, and
their performance is subject to lighting conditions. Besides, cam-
eras may raise privacy concerns. RF signals such as Wi-Fi has been
widely used for tracking, however they usually require customized
hardware and have a limited accuracy due to the high RF signal
propagation speed [30, 32, 37]. Some recent work [19, 40] has lever-
aged acoustics for high-precision device tracking by estimating the
distances to multiple anchor points. They still require additional
infrastructure (e.g., multiple external speakers), which increases
the cost and adds configuration efforts. Even though these speakers
may be available in users’ environment (e.g., speakers on a laptop,
TV), they are usually not separated in ideal locations to serve as
anchor points. Users still need to play the designed sound on a
laptop, or hack the TV audio system.

https://doi.org/10.1145/3131672.3131689
https://doi.org/10.1145/3131672.3131689
https://doi.org/10.1145/3131672.3131689

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

In this paper, we propose BatTracker, the first high precision,
infrastructure-free mobile device tracking system in 3D space with
a range comparable to existing commercial solutions [1, 3, 5]. The
device continuously emits acoustic signals that bounce off sur-
faces of nearby objects (e.g., walls, ceilings). The echoes are re-
ceived and relative distances to those reference objects are in-
ferred. The distance estimations are used to correct drift errors
in position prediction from inertial data. Unlike inertial-only ap-
proaches [15, 22], BatTracker leverages acoustic signals capable of
accurate distance measurements. It is not affected by lighting con-
ditions and does not cause privacy concerns. Compared to recent
acoustic approaches [19, 40], it uses echoes from nearby objects
instead of dedicated external anchor points (e.g. speakers), thus
eliminating the needs of any additional infrastructure.

Despite such benefits, accurate, robust and infrastructure-free
device tracking based on echoes is far from straightforward. Due
to the existence of multiple surrounding objects, many echoes, not
just those bouncing off objects of large surfaces, but also those from
smaller objects or over multiple surfaces (i.e, multi-path), will be re-
ceived. Reliably associating echoes to objects is critical to obtain the
correct distance measurements. The device movement may create
occlusions (by the device, other objects or human body) of the path,
thus frequent missing of echoes from reference objects; it can also
produce significant noises thus inaccurate acoustic measurements.
We must design robust algorithms to reliably associate distance
measurements to reference objects despite noisy data and frequent
missing of desired echoes.

We make the following contributions in this work:

• We achieve high-precision device tracking in 3D indoor en-
vironments by incorporating complementary inertial and
acoustics measurements, while eliminating the requirement
of any additional hardware.

• We design an acoustic sensing technique that can produce
accurate distance measurements from the device to nearby
objects using echoes, and infer the device’s movement ve-
locity from Doppler shifts.

• We follow a multi-hypothesis tracking framework, and de-
sign a probabilistic tracking algorithm that fuses distance
measurements, Doppler shifts and echo amplitudes to create,
prune and evolve multiple hypotheses about the device posi-
tion over time, thus achieving robust and accurate tracking.

• We build a prototype and conduct extensive experiments,
demonstrating that BatTracker can track mobile devices in a
typical roomwith amaximum error of < 1cm for 2D tracking,
and a 90-percentile error of ∼ 1cm for 3D.

To the best of our knowledge, BatTracker is the first work to
track mobile devices in indoor environments at sub-cm accuracy
without the requirement of any additional infrastructure.

2 BACKGROUND
The most straightforward way for tracking is based on inertial
sensors. Accelerometer and gyroscope embedded in mobile devices
allow us to calculate both the direction and speed of the movement.
Theoretically, we can integrate acceleration to get velocity, and in-
tegrate velocity to get the moving distance. However, this approach

Missing data

Track crossing

Track diverge after parallel/twist

D
is

ta
n

ce
 M

e
as

u
re

m
e

n
ts

Time

False track divergence

A. B. C. D. E.

P1

P2

P3

P2

P3

P1 P2
P1

P3

P1
P2

P3

P4 P5

P1

P4

P3
X

Y

P2

P5

Figure 1: Solid lines represent tracks to two reference ob-
jects. Dots at each time stamp are distance measurements
from acoustics, where grey ones are from clutters or noise
and black ones are from reference objects. Red circles repre-
sent missing measurements.

suffers from large drifts over time: the errors can accumulate to
meter level in a few seconds [15, 40].

Acoustics is a favorable sensing modality for ranging and track-
ing due to the slow sound propagation speed, hence higher accuracy.
Recent acoustic based device tracking work estimates distances
from the device to multiple anchor points, either by integrating
the device moving velocity, or directly from Frequency Modulated
Continuous Waveform (FMCW) [31] or propagation delay, then
triangulate the device location.

Existing work [40] leverages velocity estimated from Doppler
shift for tracking, which turns out to be more reliable than inertial
tracking since it requires single integration. However, the error
accumulation is still non-negligible over slightly longer time pe-
riod(e.g., tens of seconds). Direct distance measurement does not
require integration hence eliminating error accumulation. However,
existing work (e.g., CAT [19]) requires infrastructure (e.g., multiple
external speakers) as anchor points, which adds to the costs and
installation/configuration efforts.

In consideration of the above, we decide to leverage echoes from
nearby objects with large surfaces (e.g., walls, ceiling/floor, large
furniture) commonly existing indoors. BatTracker predicts the de-
vice position using inertial data in a short recent time window, and
immediately correct accumulated error using acoustic measure-
ments.

3 CHALLENGES
Accurate tracking leveraging echoes faces multiple challenges: i)
multi-path effects and clutters in a room make acoustic echoes
thus measurements inevitably noisy; measurements to desired ref-
erence objects may be frequently lost due to phone movements or
occlusion; ii) the echo-object association, i.e., which relative dis-
tance/velocity measurements correspond to which objects, must
be reliably identified; iii) multiple noisy and error-prone inputs
(including inertial, distance and velocity measurements) must be
fused effectively and efficiently for robust, accurate tracking.

Figure 1 illustrates four problems in echo based tracking. To
simplify, assume two reference objects X, Y (e.g., two walls joining
at a room corner) exist and at each time point 5 echoes (some from
other objects and/or multipath) thus distance measurements are
obtained. As the device moves, we must reliably tell which distance

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

measurements are the relative distances to X, Y over time (i.e., the
two curves).

False track divergence. Since device movements are continuous,
the distance at next time slot should be close to the previous one.
Thus a straightforward way is to use the closest distance mea-
surement in the next time slot. However, due to other objects and
multi-path in cluttered environments, many other echoes thus dis-
tance measurements exist. This method can easily diverge onto
a false trace if there exists a distance measurement coming from
clutter or noise but closer to the previous measurement. Case A
shows a distance represented by point P3 is closer to P1 than the
correct point P2, causing a false divergence.

One may assume moving velocity is constant in short time peri-
ods thus traces are smooth. However, sharp acceleration or turning
can still happen. Thus the past “trend” may also cause false track
divergence. Case B shows that P2 is selected based on the trend,
but P3 is the corrent one due to a sharp turn in movements.

Track crossing. For 3D tracking, we need to maintain individual
distance tracks to at least three reference objects. Sometimes two
(or even more) distances become close to and cross each other. We
must figure out which one corresponds to which when they pass
the crossing point (e.g., in case C, which of P2, P3 corresponds to X,
Y after crossing P1).

Missing data. Ideally, the speaker and microphone should be (at
least partially) facing the reference objects all the time for robust
measurements. However, facing away or opposite from reference
objects, or occlusion to them by other objects or the human body,
can all happen and cause echoes from desired reference objects
missing. Case D shows measurements P2 and P3 are missed, hence
P4 and P5 (from clutter, multi-path) are incorrectly taken to update
the trace.

Track diverge after parallel/twist. This case is more difficult than
crossing because two traces become almost merged into one for
extended time. Using distance or velocity cannot tell which is
which when they diverge. Case E shows two tracks merge through
P1, P2, P3, then diverge into separate tracks. Neither closest distance
neighbor or smooth trend can help decide P4 and P5 to the correct
track.

4 BATTRACKER DESIGN
BatTracker incorporates two sensingmodalities for accurate, robust,
and infrastructure-free 3D tracking: inertial sensors in a Motion
Model for track prediction and acoustics in an Observation Model
for track correction (Figure 2). Before tracking starts, a trace is
initialized by locating the device in the room coordinate system
using distances to reference objects (e.g., walls and ceiling in a
room, or furniture such as large dressers). Based on the motion
model, we predict the position of the device in the next time slot
by double integration of acceleration. The short interval ensures
relatively small error accumulation. Multiple hypotheses on the
association between distance measurements and reference objects,
thus the device location, are derived by incorporating Doppler
shifts and echo amplitudes. The observation model evaluates the
strengths of evidences for each of these device location hypotheses,
and makes track splitting/pruning decisions to correct errors. The
above prediction, association and correction steps are repeated for
continuous tracking.

Motion Model

Track
Initiation

Probabilistic
Data Association

GyroscopeLinear Acceleration

Observation Model

Distance
Candidates

Amplitude
Candidates

Doppler Shift
Candidates

Track
Updating

Track
Pruning

Track
Splitting

Track
Estimation

Current
Tracks

Weighting and
ResamplingM

u
lt

i-
H

yp
o

th
es

is
 T

ra
ck

in
g

Figure 2: BatTracker uses inertial data in amotionmodel for
track prediction, acoustics in an observationmodel for track
correction, and fuse them into a multi-hypothesis tracking
framework for robust tracking.

Received signal:
Noise removed

Emitting signal:
1ms duration
30ms interval
Hanning window

1ms
30ms

30ms

Cross-correlate

STFT
STFT

STFT

Direct Path
Echo

Echo Echo

Figure 3: A particular sound signal and multiple signal pro-
cessing steps produce echo distance, amplitude and velocity
measurements.

4.1 Acoustic Sensing
The acoustic sensing module of BatTracker consists of signal emit-
ting, recording, and a series of signal processing steps to produce
distances, amplitudes and Doppler shifts, hence velocity measure-
ments for echo candidates from nearby objects in indoor envi-
ronment (Figure 3). Unlike some existing work [10, 17] that only
produces ranging measurements, we develop signal processing
techniques for accurate and reliable range measurement, and addi-
tionally Doppler frequency shift, thus both relative distance and
velocity to each object.

4.1.1 Emitting Signal Design. Existing acoustic ranging work
uses frequency modulated pulse signals that have a linear increas-
ing frequency to improve the ranging resolution [10]. However,
deriving frequency shifts from such frequency modulated pulses is
difficult. Thus we choose signals with a constant frequency, cho-
sen at 17KHz, which is slightly audible to human. An even higher
frequency decreases the robust tracking ranges because of faster

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

signal power attenuation. By setting a moderate volume, our de-
signed sound signal is nearly inaudible to most users, especially
under background noise (e.g., music, video games).

We choose a pulse length of 1ms . Such a short pulse length
reduces potential overlapping between echoes traveling similar
distances, thus improving the distance measurement resolution.
It also provides less sampling points for each echo as inputs for
Doppler shifts extraction, thus decreasing the accuracy of velocity
estimation. In BatTracker, we have a high accuracy requirement on
distance measurements, while velocity from Doppler shift serves as
complementary inputs, hence we prefer a shorter pulse duration.

A Hanning window [13] is applied on the pulse to reshape its
envelop to increase its peak to side lobe ratio, thus producing higher
signal to noise ratio (SNR) for echoes. To ensure echoes from two
consecutive pulses do not overlap, there has to be enough gap in
between. From experiments, objects more than 5m away create
very weak echoes, which can be ignored. Thus the minimum delay
between two pulses is 5m×2

343m/s ≈ 29.15ms , where 343m/s is the
sound propagation speed under a typical room temperature of
25◦C. We give a bit buffer space and set it at 30ms . This would allow
1000/(30 + 1) ≈ 32Hz measurement rate, sufficient for tracking the
device movements.

4.1.2 Acoustic Measurements Generation. We develop several
steps to generate distance and velocity candidates from received
signals.

Noise Removal. The received signal will go through a Butter-
worth bandpass filter with pass band of 17K ± 200Hz to remove
background noise, while preserving the frequency shift caused by
the Doppler effect. Without such filtering, weak reflections can
be buried in the noise. This step is critical for tracking in noisy
environments.

Locate Each Pulse. Next we cross-correlate the signal with the
designed pulse, a common technique [23] that produces a peak for
each echo, and obtain the upper envelop for the signal. We chop
the envelop into segments of small time windows of 31ms , each
containing echoes from one pulse only. To this end, we need to
find the starting points of these windows. Since the first peak will
always be the direct sound from the speaker to the microphone and
has the highest amplitude, they are used as the starting points.

Distance Estimation. For each emitted pulse, multiple peaks
corresponding to different echoes from different objects are de-
tected. Using a threshold, we can select only the top-K strongest
peaks, which are hopefully from larger, closer objects. By calculat-
ing the time delay between each echo and the starting point, we
can estimate the distances between the device and surrounding
objects. We also extract the amplitude for each echo, which is used
for data association in tracking algorithms.

Doppler Shift Estimation. After locating each echo, we ana-
lyze the frequency fe of each received echo, which consists of 48
sampling points (1ms). As the sampling frequency fs = 48KHz,
taking fourier transform on 48 points will give us a frequency res-
olution of 48000

48 = 1KHz. We use a similar approach of artificial
padding of zero-valued points described in [40], and apply Short
Term Fourier Transform (STFT) to get 1Hz resolution. The relative
velocity to each object where the echo comes from can be calculated

z
x

y

Speaker

Microphone
x

Speaker

Microphone

y

z

Figure 4: Microphone and speaker are at the bottom of the
mobile device, which is pointed to a corner in a room for
reliable echo detection.

by the following equation:

v =
fd
2 · f

· c (1)

where fd = fe − f is the Doppler frequency shift, f = 17KHz is
the frequency of the designed signal, c is the sound propagation
speed. The sign of fd indicates the direction of movement, where
fd > 0 means movements towards the object, fd < 0 those away
from the object. This gives us a velocity resolution of ∼ 1cm/s .

Note that due to the very limited amounts of sampling points,
the velocity estimation from Doppler shifts may not be very accu-
rate. Hence we do not use it directly for device moving velocity
estimation, but incorporate it as a complementary input for data
association improvement.

5 TRACKING ALGORITHM
We design algorithm for track initiation through simple movement
gestures, and a multi-hypothesis particle filtering framework for
track updating. Inertial data serves as motion model for state pre-
diction, acoustic distance measurements are observations for state
correction. Echo amplitudes and velocities from Doppler shifts
are leveraged for data association problem and importance weight
estimation.

5.1 Track Initiation
Track initiation is the process of finding major reference objects
with stable echo reflections, and determining the distances to each
of them, such that we can track such distances continuously. In
practise, two adjacent side walls and the ceiling can be a very
good reference object combination as they are relatively large and
clean. Figure 4 shows the reference coordinate and the device local
coordinate, the x-y plane is the ceiling, y-z and x-z planes are two
perpendicular side walls. There are two major challenges for track
initiation: i) how do we find out objects that create strong and
stable echoes, hence with less chance of data missing, and ii) how
to select three stable objects, and associate each of them to the x, y,
z directions in reference coordinate.

We solve the above problem by simple movements using a statis-
tic approach. Without loss of generality, we illustrate the process

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

Track Generation Track Association Final Selection

Stable track
candidates

Track candidates
from one direction

Initial track

1

2 3

4

5

1

3

5

1

Figure 5: Track initiation process in one direction, which
consists of track candidate generation, track association and
final track selection.
of finding reference object (e.g., x-z plane) in Figure 5. We per-
form the following two steps, track candidate generation and track
association for initiation.

i) Track candidate generation.Wepoint the phone’s bottom (where
speaker and microphone locate) to one direction (e.g., perpendicu-
lar to x-z plane), hold the phone still for a few seconds (0 − 2.7s in
Figure 5). In this step, we try to find out objects that create stable
measurements. The horizontal line between 0 − 2.7s corresponds
to nearby objects from multiple directions. We use a simple den-
sity based clustering approach to locate these candidates, and keep
the top-K candidates with least measurement variance as stable
potential track candidates. In this example, we can easily notice
that there are 5 stable candidates as marked in Figure 5. Note that
these stable echoes may come from any direction, hence we still
need to figure out which one is from x-z plane along y axis.

ii) Track association.We make minute movement back and for-
ward along y axis several times (2.7 − 6s in Figure 5). During this
moving period, echoes coming along y axis shows a strong robust-
ness to noise (e.g., track candidate 1, 3, 5). Since the movement
is minute in a small range, we can easily track the distance mea-
surements of such track candidates using a naive nearest neighbor
method with a range constraint. We derive the moving accelera-
tion by double deviation of the distance measurements, and cross-
correlate this derived acceleration with the one measured from
inertial sensor to get the similarity. Track candidates from x-z plane
have the highest similarity since they have the highest match to
the movement along y axis. In such way, track candidate 2, 4 are
filtered out. Now we know track 1, 3, 5 are coming along y axis,
and we select the one with highest cross-correlation similarity (e.g,
track 1) as our final initial track.

We do the above steps for each direction to find reference objects.
Typically, it takes a few seconds for moving the device along one
direction, hence the whole track initiation can normally be finished
in < 30s .

5.2 Track Updating
We update the track over time based on the sensing data from iner-
tial sensors and acoustics, where inertial data serves as motion data
for device position prediction, and acoustic measurements serve as

observations for position correction. The most challenging problem
is caused by the cluttered nature of indoor environments, which
creates lots of undesired echoes, hence making it hard to associate
distance measurements to our reference objects. We start from in-
troducing the motion model and observation model in our design,
then present how the challenges are solved using a probabilistic
Multi-Hypothesis Tracking (MHT) framework.

MHT has been used in computer vision and radar applications
for human or aircrafts tracking [24, 29]. MHT allows a track to be
updated by more than one measurement at each update, spawning
multiple possible tracks, and it calculates the probability of each
track and typically only reports the most probable of all the tracks.
Extended Kalman Filter (EKF) and particle filters are commonly
used inMHT problems [12, 14]. Amore detailed description of MHT
can be found in [7]. Note that MHT is only a general framework,
the critical task is the detailed design of track initialization and
state update algorithms, and how to adapt MHT to our specific
inertial/acoustic tracking problem.

5.2.1 Models. Following the MHT framework, we design the
motion model and observation model for our tracking system.

MotionModel.Device position and velocity are defined as state
vector s(t) = [x(t),y(t), z(t), Ûx(t), Ûy(t), Ûz(t)]′, where [x(t),y(t), z(t)]
represents the device position in reference coordinate (i.e, room),
[Ûx(t), Ûy(t), Ûz(t)] is the corresponding velocity along each axis.

The absolute acceleration without gravity along each axis in
the device’s local coordinate is obtained from composite sensor
linear acceleration from Android API, while the absolute device
orientation is obtained from composite sensor game rotation vec-
tor. We transform the linear acceleration in device coordinate into
reference coordinate based on device orientation, and leverage the
transformed acceleration for state prediction. The state update equa-
tion can be derived from a motion model on the state vector. Based
on the acceleration, we model the target motion with velocity and
acceleration along three axes. The resulting state update equation
is as follows:

ŝ(t + △t) = A(t)s(t) + B(t)µ(t) + ε(t) (2)

where ŝ(t + △t) is the predicted state at time t + △t , △t is the
inertial data sampling interval, A(t) and B(t) are motion matrix
from physical model x(t + △t) = x(t) + Ûx(t)△t + 1

2a△t
2 + ε(t),

where a is the linear acceleration and ε(t) ∼ N(0, Σu) is the motion
noise to capture the uncertainty. Since the acoustic sampling rate is
lower than inertial, we keep updating the state during time interval
[t , t + τ], where τ is the time interval between adjacent acoustic
measurements. This inertial based motion prediction happens every
acoustic sampling cycle (e.g., ∼ 30ms in our implementation), then
the predicted location is corrected by acoustic measurements, thus
the accumulation error over this short period is sufficiently small
to be negligible.

Observation Model. The observation consists of range esti-
mates to nearby objects at time t , which is represented as d(t) =
{d1(t),d2(t), ...,dN (t)}. This observation model can be visualized
as shown in Figure 5. To minimize the possibility of missing data,
we generate N distance candidates at each time slot, which are
represented as black dots in Figure 5 with a time interval τ . Note
that a larger N can decrease the data missing probability, however

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

it brings more clutter/noise measurements. As a balance between
two cases, we set N = 15 in our experiments. The state s(t) consists
of phone location and velocity at time t , hence we still need velocity
observations. There are actually two choices in our design: velocity
derived from Doppler shift, and inferred by device position changes.
Due to the limited sampling points for Doppler shift extraction,
the velocity estimation is not robust enough as direct observations
(evaluated in Section 6.1). Hence we select the later solution, veloc-
ity can be easily estimated by dividing position changes by time
interval. We estimate the velocity in a time window of multiple τs
to reduce the error. In our implementation, τ = 31ms is a very small
interval, a small distance error can lead to a large error in velocity
estimation as τ is the denominator.

It is assumed that distance measurements at each time t are nor-
mally distributed around the true ranges to objects with variance σ 2

r
and a data missing probability PM . These measurements may also
include spurious peaks due to clutters or noises. Consider the ob-
servation d(t) = {d1(t),d2(t), ...,dN (t)}, the range candidates di (t)
may correspond to one or multiple reference objects, or the clut-
ters. Hence, we define a set R̂(t) = {zm (t)}N

3

m=1 that consists of the
all possible unordered combinations zm (t) = {di (t),dj (t),dk (t)},
within which di (t),dj (t) and dk (t) are distances to the three refer-
ence objects. In our case of 3 perpendicular surfaces in a corner, the
3 distances will uniquely determine the location of the device. Since
the distance to each reference object can be the same, hence we can
have N 3 possible combinations, which is a non-trivial amount. We
reduce the number of combinations by measurement validation,
which removes measurements that are “far away" from predicted
location:

R(t) = {zm (t) ⊆ R̂(t) : [zm (t) − ẑ(t)]′S−1[zm (t) − ẑ(t)] ≤ γ } (3)

where R(t) is the set of validated measurement at time t , ẑ(t) is
the predicted position from predicted state ŝ(t), γ is a threshold to
limit the number of validated measurements, S = diaд{σ 2

r ,σ
2
r ,σ

2
r }

is the covariance matrix of the measurements, which describes the
uncertainty.

5.2.2 ProbabilisticMulti-Hypothesis Tracking. The tracking prob-
lem is formulated as a Sequential Monte Carlo (SMC) problem,
specifically, a variation of particle filtering framework with multi-
hypothesis tracking capability. We maintain a collection of K(t)
“particle clouds", and each cloud represents a possible state esti-
mate of a possible track, i.e, a track hypothesis. The kth particle
cloud {snk (t)}

Nk (t)
n=1 consists of a collection of Nk (t) “particles". Each

particle has the concrete values for each dimension of a state s(t),
representing a possible device position and velocity at time t . The
total number of particles of all the particle clouds sum up to a
constant number N =

∑K (t)
k=1 Nk (t). The framework operates on

discrete time with an interval τ and repeats multiple steps for each
time slot: track update, track splitting, track pruning and track
estimation.

We introduce the high-level design of these steps, and elaborate
each step afterwards. Track update predicts the state s(t) of each
particle in each existing particle clouds according to the motion
model. Track splitting splits each particle cloud into “particle sub-
clouds" when multiple validated measurements are available, and

ω0
1

Validated measurements

Predicted state from motion model

Corrected state from observation model

Initial
Track

Track
Update

Track
Splitting

Track
Pruning

ω0
2

ω0
3

ω0
1

ω1
1

ω1
2

ω1
3ω2

1

ω2
3

ω3
1

Figure 6: Tracks are represented by particle clouds, which
are updated by motion model and split into multiple sub-
clouds according to validated measurements. Those clouds
with a weight lower than a threshold are pruned.

computes theweight for each sub-cloud. Track pruning removes sub-
clouds with a weight less than a certain threshold, normalizes the
weights of remaining sub-clouds, then repopulating the number of
particles within each sub-cloud to form a new set of particle clouds
with a total number of particles of N . Track estimation returns the
weighted mean of all the particles as the estimate of current state.
Figure 6 shows the above steps, illustrating how particle clouds
evolve, and life cycles. In such a way, we can maintain multiple
potential “correct" track hypotheses by multiple particle clouds,
and leverage future measurements to kill the “incorrect" ones.

Track Update. The state ®s(t) = {s1(t), s2(t), ..., sK (t)(t)} con-
sists of all the particle clouds sk (t) indexed by k , where K(t) is the
total number of particle clouds at time t . The kth particle cloud at
time t is defined as:

sk (t) = {[xnk (t),y
n
k (t), z

n
k (t), Ûx

n
k (t), Ûy

n
k (t), Ûz

n
k (t)]}

Nk (t)
n=1 (4)

where Nk (t) is the total number of particles in this cloud. For each
iteration, the state represented by each particle is updated according
to the state update equation (2) in motion model.

Track Splitting. Given the state ®s(t) = {s1(t), s2(t), ..., sK (t)(t)}
at time t , each particle cloud sk (t) is updated according to the vali-
datedmeasurements from observationmodelRk (t+τ) = {{dm,k

x (t+

τ),dm,k
y (t +τ),dm,k

z (t +τ)}}
Mk (t+τ)
m=1 at time t +T , whereMk (t +τ)

is the number of validated measurements for the kth cloud.Mk (t +
τ) = 0 means no validated measurement is available, i.e, data miss-
ing. We leverage all the Mk (t + τ) validated measurements, and
update a fraction of particles according to each measurement, hence
splitting the particle cloud. A fraction of particles without update
is always preserved to capture the case of data missing. When
multiple validated measurements are available, we compute the
likelihood for each of them that it is the “correct" measurement
from our reference object using a probabilistic data association
approach.

Probabilistic data association. For each validated measurements
in Rk (t+τ), we may have two situations: the “correct" measurement
is captured, or missed. We denote the data missing probability as

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

PM (t), hence the weight for each measurement to be “correct" can
be defined by a normalized weights:

ωk
m (t+τ) =

L∗k
m (t+τ)

PM (t+τ)+
∑Mk (t+τ)
j=1 L∗k

j (t+τ)
,m = 1, 2, ...,Mk (t + τ),

PM (t+τ)

PM (t+τ)+
∑Mk (t+τ)
j=1 L∗k

j (t+τ)
,m = 0,

(5)
where PM (t + τ) is the data missing probability at time t + τ , which
means the “correct" measurement is missed, and

L∗k
m (t + τ) = p(zkm (t + τ)|ẑk (t + τ))

= N[zkm (t); ẑk (t + τ), S]

=
1

√
2πS

exp{−
1
2
[zkm (t + τ) − ẑk (t + τ)]′S−1

[zkm (t + τ) − ẑk (t + τ)]}

(6)

is the likelihood of the measurement zkm (t + τ) originating from
the desired reference object rather than from clutter, where ẑk (t+τ)
is the predicted device position at time t + τ from motion model, S
is the covariance matrix of measurements.

Data association enhancement. Now that we get an estimation of
how likely the distance measurement combination zkm (t + τ) is the
“correct" one based on the similarity between predicted position and
distance measurement. However, due to the noisy inertial data, the
predicted position is not accurate enough for robust data association.
Besides, two close distance measurements can be easily confused.
Hence we further optimize the data association by incorporating
additional information from data: the velocity from Doppler shift
and echo amplitude.

We define velocity υkm (t + τ) as the velocity measured from
Doppler shift at time t + τ , and αkm (t + τ) is the vector of echo
amplitudes. The device movement is always continuous, hence am-
plitudes are supposed to be continuous in very short time interval.
Since they are independent observations, we incorporate the like-
lihood probability p(υkm (t + τ)|υ̂k (t + τ)) and p(αkm (t + τ)|αk (t))

to enhance the data association, where υ̂k (t + τ) is the predicted
velocity from motion model, αk (t) is the vector of amplitudes at
time t . Thus the integrated data likelihood can be formulated in a
product form as:

Lk
m (t + τ) = L∗k

m (t + τ) · p(υkm (t + τ)|υ̂k (t + τ)) · p(αkm (t + τ)|αk (t))
(7)

We further estimate the data missing probability PM at each
time slot according to the pose (location and orientation) of the
device. For simplicity, the data missing probability PM can be set as
a constant value, hence we always split a fixed portion of particles,
and evolve this sub-cloud without measurement data. Due to the
physical layout of mobile phone and hardware constrains, we find
that the data missing probability is highly dependent on the relative
orientation of the phone to reference object, whereas the distance
to the object has less impact within a certain range. Figure 4 shows
a typical way of how we hold the phone for best tracking perfor-
mance: the phone points to a corner to get strong echoes from
three reference surfaces. In practise, a ceiling corner in a room is

a preferred choice. For clarity, Figure 4 shows the case when the
phone points to a bottom corner. From experiments, we found that
θ has a strong impact of data missing from x-y plane, while φ has
a strong impact on both x-z and y-z plane. As data missing from
each reference object is independent, this data missing probability
PM (t) can be formulated as a product form as follows:

PM (t) = PMX (θ , t)PMY (φ, t)PMZ (φ, t) (8)

where PMX (θ , t), PMY (φ, t), PMZ (φ, t) are data missing probabili-
ties from each direction, which are approximated using polynomial
functions from experiment data in Section 6. We omit the distance
as it has negligible impact compared to orientation within our
tracking range.

Particle Cloud Splitting. Each particle cloud may have multiple
validated measurements, and their associated weights. We consider
one validated measurement zkm (t + τ) at each time, hence our prob-
lem becomes a traditional particle filter problem, which requires
weight calculation and resampling [43]. Based on this measurement,
we compute the weight for each particle within the kth cloud using
the same form in Equation 7, and resample a number of N k

m (t + τ)

particles to form a sub-cloud, where N k
m (t + τ) is proportional to

ωk
m (t + τ) and

∑Mk (t+τ)
m=0 N k

m (t + τ) = Nk (t).
Track Pruning. Each particle cloud is split into multiple sub-

clouds at each time slot. Without careful pruning, the number
of particle clouds will increase exponentially. Hence we need to
terminate some clouds and repopulate the remaining ones with
new particles. As shown in Figure 6, there’s only one particle cloud
when the track is initialized. Then it’s split into 4 sub-clouds, each
with a weight of ωi , which is the data likelihood. We compare ωi
to a pruning threshold λ, and terminate clouds with weights lower
than λ. In this example, the cloud with ω3 is terminated. Then we
normalize the weight of remaining particle clouds, and repopulate
each cloud by drawing new particles randomly from existing cloud
to maintain the total number of particles. As the tracking evolves,
the repopulated particle clouds are further split into multiple sub-
clouds, each with a weight proportional to the product of current
cloud weight and the data likelihood. Then we repeat the pruning,
weight normalization, and repopulation steps.

A particle cloud is split into multiple sub-clouds when multiple
validated measurements are available. By setting a proper threshold,
we keep the number of validated measurements within 10, typically
3 − 5. The size of a cloud can increase or decrease during splitting
and pruning. A cloud with larger weights, might evolve with a
larger number of particles after each pruning step. On the contrary,
a cloud with low weights may evolve with a lower number of
particles, and disappear eventually.

Track Estimation. The estimated state of tracking is the mean
of particle distributions and can be obtained as a weighted average
of all the particle clouds:

sE (t) = Σ
K (t)
i=0 ωisi (t) (9)

this estimated track is further smoothed using a moving average
filter to reduce jitters.

Our multi-hypothesis tracking algorithm repeatedly performs
track update, track splitting, and track pruning over time, and
generates track estimation for device tracking.

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

0 1 2 3
Ranging error (cm)

0

0.5

1

F
ra

ct
io

n
of

 m
ea

su
re

m
en

t

Without Noise
With Noise

Figure 7: Distance candidate accuracy with and without
background noise.

6 EVALUATION
We use Huawei P9, a representative mobile phone of mainstream
design with speaker and one microphone located at the bottom, as
our mobile device to evaluate BatTracker from two aspects: acoustic
measurements and tracking performance. We conduct tracking
experiments in a highly cluttered laboratory with area of ∼ 15m2.
Inertial data are sampled at 50Hz, and acoustic signal is sampled at
48KHz.

6.1 Acoustic Measurements
Acoustic measurements consist of distance measurements to nearby
objects and relative moving velocities from Doppler shift. We eval-
uate acoustic measurements using the following metrics: ranging
accuracy, data missing probability, and velocity from Doppler shift.

Ranging Accuracy. The ranging accuracy to reference objects
is critical for accurate tracking. To evaluate the ranging perfor-
mance, we select a plain wall in an empty space, and measure the
distance to the wall at different locations using the mobile phone.
We vary the location thus the ground truth distance changes from
0.5 − 3m with steps of 0.5m, and we repeat 30 times at each loca-
tion 1. We also conduct the same measurement experiments in a
noisy environment by playing a mixed sound (different kinds of
music and talk shows) from a nearby laptop at a normal volume.
Figure 7 shows the CDF for all the measurement errors of both with
and without background noise. In quiet environment, the maximum
error is within 2cm while the 90-percentile error is less than 1cm.
Errors under background noise have slightly larger maximum error
of ∼ 2.5cm, however, there’s no significant performance deteriora-
tion. Both cases have a sub-cm level median error, which lays the
foundation for high precision tracking.

Data Missing Probability. Data missing is one of the most
challenging problems for robust tracking. Too much missing data in
a short period can easily cause a tracking failure. From experiments,
we find both the distance and relative orientation to an object have
an impact on data missing probability, and phone movement can
aggravate the problem. We evaluate the data missing probability
in two individual experiments: impact of distance and movement,
and impact of relative orientation.

Impact of distance andmovement.A larger distance createsweaker
echo reflections, which have lower signal to noise ratio (SNR), hence
1Further experiments show that distance beyond 3m has a high probability of data
missing, and causing tracking errors, thus not used.

0 1 2 3 4
Distance (m)

0

0.2

0.4

0.6

0.8

1

D
at

a
M

is
si

ng
 P

ro
ba

bi
lit

y

Static
Moving

(a) Distance impact on data missing.

-180 -120 -60 0 60 120 180
Orienation (degree)

0

0.2

0.4

0.6

0.8

1

D
at

a
M

is
si

ng
 P

ro
ba

bi
lit

y

X Axis
Y Axis
Z Axis

(b) Orientation impact on data missing.

Figure 8: Data missing probability under different distances
and relative orientations.

such echoes may not be detected andmissed. To evaluate the impact
of distance, we point the phone bottom to a plain wall, and vary
the distance from 0.5 − 4m with steps of 0.5m. We collect data for
10s at each location, which consists of ∼ 300 measurements. To
simulate the movement, we repeat the above steps while wobbling
the phone within a small range while collecting data. For each mea-
surement period, the measurement distances are supposed to be
continuous within a certain threshold. If no measurement is present
in this range, we count it as data missing. We set this threshold as
3cm, and count the number of such outliers, which are regarded as
missing data. Figure 8(a) shows the data missing probability of both
static and wobbling situations. As we can observe, measurement are
very reliable with almost no missing data within the range of 1.5m.
When the phone is static, the data missing probability remains at
a low level (< 5%) up to 3m, and less than 10% up to 4m, which
turns out to be quite reliable. While the phone is wobbling, the
probability gets larger, however, it’s still within 6% up to 3m.

Impact of relative orientation. The relative orientation of the mo-
bile device to a reference object has a large impact on data missing
problem for two reasons: i) it determines the facing direction of
the speaker; ii) it determines the opening direction of the micro-
phone. Since the microphone on mobile devices is not designed
omnidirectional for application like BatTracker, the user needs to
hold the device in a particular way (explained later) to minimize
data missing probability.

We first evaluate the microphone sensitivity to sounds from
different directions by analyzing the recording pulse amplitudes.
One phone emits the designed signal continuously as sound source,
simulating a mirrored speaker from a reference object. We use
another phone to record the sound with a distance of 1.5m away
from the sound source. Figure 9 shows the placement of two devices,
and the rotation axes. The default orientation are defined as zero
when the microphone faces the speaker of the source, which has
the highest amplitudes. Then we rotate the receiving device along
x, y, z axis sequentially with a step of 30◦ for recording. We use a
bandpass filter to remove low frequency components, and analyze
the amplitude of the filtered signal, which is shown in Figure 9.
As we can observe, amplitude decreases slightly when the device
rotates along x axis away from 0◦, which is due to the slightly
blocking from the phone frame with a blocking distance of the
phone height. After that, it decreases a lot as the microphone faces
the opposite direction. Rotation along y axis does not change the

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

xz

y

Figure 9: Normalized received signal amplitude under differ-
ent rotations.

amplitude too much; the amplitude remains at a high level since the
microphone always faces the speaker. Similar to x axis, amplitude
also decreases when the device rotates along z axis away from
0◦. However, it decreases much faster as the signal is blocked by
a distance of phone width. Figure 8(b) shows the data missing
probability with various rotation. As expected, we almost have no
missing data when the phone rotates along y axis. The data missing
probability remains < 10% when rotating along x, y axis within the
range [−60◦, 60◦]. Rotation along z axis incurs higher data missing
probability than that along x axis. The evaluation results are used
for parameter estimation in Equation 8 to approximate the data
missing probability. In most cases, we select three perpendicular
walls in a room corner as reference objects. To make a balance
among the three walls, we recommend the user points the bottom
of the device to a corner with the phone screen facing sideways.
In this way, we can have a balance between two side walls, get
a reliable refection from the ceiling, and suppress the unwanted
clutter echoes from ground.

Velocity from Doppler Shift. We evaluate the accuracy of
velocity derived from Doppler shift, and compare the distance es-
timations with inertial sensor and sound propagation time delay.
We choose a clean wall as reference object to simplify the data
association with a distance of 1.5m between the wall and device.
Then we move the phone back and forth, and compare the ve-
locity and ranging from different schemes. Figure 10 shows the
velocity and ranging results. Velocity from Doppler shift and time
delay (calculated from distance measurements) has high correspon-
dence, however, they differs a lot at some time periods (e.g., 5-6s in
Figure 10(a)). This is easy to explain, when echoes from different
directions overlap, we can not extract accurate frequency shift from
the mixed signal. Velocity from inertial sensor has a constant drift,
which keeps increasing. Figure 10(b) shows integrated ranging from
Doppler shift shows a high match to the time delay scheme, while
the inertial based result has a large accumulated error, which goes
up to 6m in a few seconds.

6.2 Tracking Performance
We evaluate the tracking performance from several aspects: track-
ing accuracy, various impact factors, comparison of different algo-
rithms, and comparison with other work [19, 40].

0 2 4 6 8
Time (s)

-2

-1

0

1

2

V
el

oc
ity

 (
m

/s
)

Inertial
Doppler Shift
Time Delay

(a) Device moving velocity.

0 2 4 6 8
Time (s)

-2

0

2

4

6

8

D
is

ta
nc

e
(m

)

Inertial
Doppler Shift
Time Delay

(b) Distance to the wall.

Figure 10: Comparison of velocity and ranging from differ-
ent schemes: inertial sensor, Doppler shift, and sound prop-
agation time delay.

Experiment Setup. We evaluate BatTracker in a highly clut-
tered laboratory with large tables and cabinets (Figure 11(a)). We
select the ceiling corner as potential reference objects. To quantify
the tracking error, we use a tilted box with drawn traces, and move
the mobile device along the traces. In such a way, we are able to
get accurate ground truth for comparison.

(a) Overview of experiment environment. (b) Tilted box with drawn traces.

Figure 11: We evaluate BatTracker in a highly cluttered lab-
oratory, and a tilted box with drawn traces used as ground
truth.

Tracking Accuracy. First, we evaluate the 3D tracking accu-
racy of BatTracker (2D tracking accuracy is evaluated later in the
comparison with other work). We move the phone along a double
circle “8" shape trace with a diameter of 10cm drawn on a tilted
box, as shown in Figure 11(b). Figure 12(a) shows the generated
traces and the ground truth. To quantify the error, we calculate the
nearest distance for each point in the generated trace to the points
in ground truth. Although this method does not perfectly capture
the real tracking error, it can provide a reasonable benchmark for
error quantifying. Figure 12(b) shows the CDF of 3D tracking error,
which is less than 1cm at 90-percentile, and the maximum error is
∼ 1.5cm.

Impact of the Number of Particles. We evaluate the impact
of number of particles on tracking accuracy. Figure 13 shows that
the 90-percentile error keeps decreasing from ∼ 5cm to ∼ 1cm
when the number of particles increases from 500 to 1500, then it
stays relatively stable. We also evaluate the number less than 500.
However, in such cases, too few particles can easily lead to tracking
failure, hence only present results with ≥ 500 particles.

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

X(cm)Y(cm)

10

-5

0

0

Z
(c

m
)

5

15 10 5 -10

BatTracker
Ground Truth

(a) Tracking result and ground truth.

0 1 2
Tracking error (cm)

0

0.5

1

F
ra

ct
io

n
of

 m
ea

su
re

m
en

t
(b) Tracking error.

Figure 12: 3D tracking result and CDF.

500 1000 1500 2000 2500 3000
Number of Particles

0

1

2

3

4

5

90
-P

er
ce

nt
ile

 E
rr

or
 (

cm
)

Figure 13: Tracking error de-
creases as the number of particles
increases, then becomes stable.

0 0.5 1 1.5 2
Tracking error (cm)

0

0.5

1

F
ra

ct
io

n
of

 m
ea

su
re

m
en

t

Without Noise
With Noise

Figure 14: Impact of
background noise.

Impact of Background Noise. To evaluate the robustness of
our scheme to background noise, we repeat the 3D tracking accu-
racy evaluation experiment under mixed background noise. We
generate background noise using the same way as we evaluate
ranging accuracy. Figure 14 compares the tracking error with and
without background noise. Similar to the ranging evaluation under
background noise, we observe no significant difference between
two cases, which indicates that BatTracker is very robust to back-
ground noise. Our designed signal is at 17KHz, which is far from
common sound noises (usually from 1−8KHz), hence we can easily
filter out low frequency noises.

Impact of Different Environments. Besides the laboratory
environment which has concrete walls, we also evaluate BatTracker
in two other typical environments, one bedroomwith wooden walls
and a conference room with glass walls. No obvious performance
difference is observed, thus we omit those figures.

Resistance to Track Initiation Error. To initialize a track, the
user needs to move the phone in three directions back and forth
sequentially to get the distances to three reference objects. These
minute movements may introduce initiation error since the de-
vice can not be guaranteed to return back to the same location. To
evaluate the impact of initiation error on the tracking accuracy,
we manually add initiation error on the initial track. Figure 15(a)
shows a normal tracking result by initiation without additional
artificial error. Figure 15(b) shows the result by manually adding
an error of 15cm in y axis. We observe that the initiation error is
corrected near the beginning, and the overall tracking result is not
obviously impacted. We further increase the initiation error up to
25cm, and the result is shown in Figure 15(c). The resulting track

has large error at the beginning, however, the track is automati-
cally recovered in a few time slots. This is because our algorithm
maintains multiple hypotheses and those evolve along the accurate
measurements are assigned higher weights, hence preserved; while
those using the inaccurate initiation measurements are pruned.
This demonstrates that our algorithm is robust to initiation error,
however, extreme initiation error may result in initiation failure.
From user experiments, users can easily move the device back to
the original position within 10cm for successful track initiation.

0.50.60.70.80.9
x (m)

0.9

1

1.1

1.2

1.3

y
(m

)

(a) Accurate initiation.

0.50.60.70.80.9
x (m)

0.9

1

1.1

1.2

1.3

y
(m

)

(b) Medium initiation error.

0.40.60.81
x (m)

0.8

1

1.2

y
(m

)

(c) Large initiation error.

Figure 15: Tracking results with different level initiation er-
ror.

Comparison with Different Algorithms. We compare the
performance of different algorithms, which includes naive nearest
neighbor range-only tracking, inertial only tracking, single hypoth-
esis conventional particle filter tracking, and our multi-hypothesis
tracking. We use the same data set (“ACM" written in the air), and
apply the above algorithms for comparison. Figure 16(a) shows the
result from nearest neighbor algorithm. This algorithm finds the
nearest measurement at next time stamp to maintain tracking based
on the simple intuition that the track is continuous. However, the
track is lost at the peak of letter “A". This demonstrates naive algo-
rithm can fail easily due to challenges we summarize in Section 3,
such as wrong data associate to a clutter noise. Figure 16(b) shows
the result from inertial data only. We can notice a constant drift
along y axis, which makes the track totally deviate from ground
truth. Figure 16(c) shows the result of single hypothesis particle
filter tracking. The result is much more robust compared to naive
algorithm, however, the track is lost at the last turning point of
letter “M" due to track deviation caused by wrong data association.
Figure 16(d) shows the tracking result of BatTracker, which avoids
the track deviation that happens in Figure 16(c) by maintaining
multiple hypotheses, which contain the correct one and later it
prunes incorrect ones due to the lack of supporting measurement
evidences.

6.3 Drawing Evaluation
We evaluate the drawing capability of BatTracker, and compare
the performance with CAT [19] and AAMouse [40]. In this com-
parison, BatTracker requires clean walls as reference objects, while
CAT/AAMouse require external speakers. We also showmore draw-
ing examples to demonstrate the usability.

Comparison with CAT and AAMouse. We compare the per-
formance of BatTracker to the most recent acoustic based tracking
work CAT and AAMouse. CAT develops a FMCW based approach
which can accurately measure the distance from mobile device to
external speakers. Thus the device position can be triangulated
from distances to multiple speakers. AAMouse shares the similar

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

0.811.2
x (m)

1.3

1.4

1.5

1.6

y
(m

)

(a) Naive nearest neighbor.

-2 0 2 4 6
x (m)

-6

-4

-2

0

y
(m

)
(b) Inertial only.

0.40.60.81
x (m)

1.2

1.4

1.6

y
(m

)

(c) Single hypothesis.

0.20.40.60.81
x (m)

1.2

1.4

1.6

1.8

y
(m

)

(d) Multi-hypothesis.

Figure 16: Tracking results of different approaches. Naive
nearest neighbor tracking is easily lost, while the inertial
only tracking drifts rapidly. Single hypothesis particle track-
ing is more robust but still lost due to track deviation. Bat-
Tracker’s multi-hypothesis tracking outperforms others.

hardware architecture as CAT. It estimates the relative moving
speed between mobile device and multiple speakers, hence tracks
mobile device movements.

To make the comparison straightforward, we adapt the same
ground truth drawing shapes as CAT: a double-circle, a triangle,
and a loop back. We draw such shapes on a paper box and move the
device along the drawings as shown in Figure 11(b). To quantify
the error, we calculate the nearest distance for each point in the
generated trace to those in the ground truth. Figure 17 shows the
traces produced by the three schemes, we can observe that both
BatTracker and CAT show a high match to ground truth without
obvious drift error, while AAMouse shows obvious deviation from
the ground truth. To quantify the error, Figure 18 shows the track-
ing error CDF of all schemes. 2 In Figure 18(a), CAT has a maximum
error of ∼ 2cm, and a 90-percentile error of ∼ 1cm, which is an
obvious improvement compared to AAMouse. For the loop back,
AAMouse shows a large drift error up to 6cm. Figure 18(b) shows
the error of BatTracker with a maximum error less than 1cm, while
the 90-percentile error is∼ 0.5cm, which turns out to be even higher
than CAT. Although the ranging accuracies of BatTracker and CAT
are comparable, the mechanism for tracking is different. CAT mea-
sures the distances from device to anchor speakers, and triangulate
the location of the mobile device. Such triangulation can enlarge
the tracking error, and its accuracy is impacted by the distance
between anchor speakers and the initial position error. In contrast,
BatTracker measures distances to perpendicular reference planes
(e.g., walls) directly, thus avoids triangulation and eliminates such

2Results of CAT and AAMouse in Figure 17 and Figure 18 are from the CAT paper [19].

(a) BatTracker (b) CAT (c) AAMouse

Figure 17: Shapes created by BatTracker, CAT, and AA-
Mouse.

error in CAT. Besides, our scheme is robust to track initiation error,
the overall tracking is not impacted by such errors. Additionally,
we smooth the tracking result with a moving average filter, which
further reduces errors for human drawing.

More Drawing Examples.We show more drawing examples
produced by BatTracker. We write “ I ♥ ACM Sensys" and draw a
spiral freely in a typical bedroom. For better readability, “I♥", “ACM"
and “Sensys" are written separately. Figure 19 shows the drawing
shapes, which are easy to be recognized. Note that there is a sharp
jump at the beginning at the first letter “S" in the word “Sensys".
This is caused by the initiation error, and corrected automatically
in a very short period. “Sensys" is written with a span over 1.5m
in space, which shows our algorithm is able to keep high accuracy
over large distances. The spiral shows BatTracker is able to produce
3D tracking with free movements.

6.4 Computation Complexity
We implement the core tracking algorithms on Android devices,
and develop a real-time tracking application. All the computation
are done in real-time on the smart phone, while the tracking results
are streamed to laptop throughWi-Fi for display only. On the smart
phone screen, we also display all the raw distance measurements.
We vary the number of particles from 600 to 1800, and monitor
the allocated memory and CPU usage, which are listed in Table 1.
From our experiments, the allocated memory for BatTracker is less
than 15MB, while the CPU usage is from 16.5% − 19.65% when
the screen is on. Turning the screen off will disable the graph
rendering, which cuts down the CPU usage by ∼ 6%. No obvious
lag is observed with particles within this range, which is sufficient
for our requirement. Further increasing particles to 3000 causes
serious lag, while the CPU usage is still under 30%, which indicates
the computation potential is not fully exploited. There’s still a large
room for optimization, such as a better multi-threading design. As
our test device HuaWei P9 is a middle-end smart phone released
more than one year ago, we believe most current and future smart
phones have sufficient resources to run our algorithms.

7 DISCUSSION
Potential Use. High precision, infrastructure-free device tracking
in indoor environments has broad application scenarios. The latest

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

0 1 2 3 4
Tracking error (cm)

0

0.5

1
Fr

ac
tio

n
of

m
ea

su
re

m
en

t

CAT 3S
CAT 2S
AAMouse 2S

(a) Double circle

0 1 2 3 4
Tracking error (cm)

0

0.5

1

Fr
ac

tio
n

of
m

ea
su

re
m

en
t

CAT 3S
CAT 2S
AAMouse 2S

(b) Triangle

0 2 4 6
Tracking error (cm)

0

0.5

1

Fr
ac

tio
n

of
m

ea
su

re
m

en
t

CAT 3S
CAT 2S
AAMouse 2S

(c) Loop back

Figure 22: CDF of drawing error.

CAT consistently follows the original shapes much closer than the
Doppler based scheme.

-20 -10 0 10 20
X(cm)

0

10

20

Y(
cm

)

(a) CAT

-20 -10 0 10 20
X(cm)

0

10

20

Y(
cm

)

(b) AAMouse

-20 -10 0 10 20
X(cm)

0

5

10

15

20

Y(
cm

)

(c) CAT

-20 -10 0 10 20
X(cm)

0

5

10

15

20

Y(
cm

)

(d) AAMouse

-20 -10 0 10 20
X(cm)

0

5

10

15

20

Y(
cm

)

(e) CAT

-20 -10 0 10 20
X(cm)

0

10

20

Y(
cm

)

(f) AAMouse

Figure 23: Patterns drawn by CAT (2 speakers) and AAMouse
(2 speakers) corresponding to the median error.

Mobile phone implementation:We also implement CAT on a mo-
bile phone (Nexus 4). The phone uses CAT to efficiently track its
own location using fast signal processing in [22] and the optimiza-
tion solving algorithm mentioned in Section 2.3. The total time
required to process audio samples and determine the position is 31
ms, lower than our processing interval (40ms). The CPU usage is
around 35%. The tracking accuracy of the mobile phone is the same
as that of the desktop version, because the only difference between
the two versions is where the signal processing and computation
are performed.
We make the phone running CAT to serve as a motion controller

for video games, including Crossy Road [43] and Fruit Ninja [35]
by mapping the phone’s movement into a cursor movement in games
using Windows API mouse_event. We ask 5 users to use our mo-
tion controller to play these games, and they find the performance
is comparable to a traditional mouse.

5. RELATED WORK
We classify the related work based on the types of the signals

and underlying techniques used for tracking and localization.

Audio based schemes: Audio signals are attractive for localization
and tracking due to its slow propagation speed, which improves
accuracy. Cricket [34] uses a combination of RF and ultrasound,
and achieves a median error of 12 cm with 6 beacon nodes. Com-
pared with Cricket, CAT improves the accuracy, and removes the
need of dense deployment and special hardware. [30] develops a
novel scheme that can estimate the propagation delay by having
both ends send and receive audio signals to cancel out the process-
ing time and clock difference. Based on [30], [49] develops a se-
ries of system approaches to make accurate distance ranging for
mobile gaming. Similar to [30], [49] relies on cross-correlation to
determine the propagation delay. To achieve high accuracy, 10-16
KHz bandwidth is used in [49]. In comparison, FMCW can achieve
more accurate estimation of propagation delay using more narrow
bandwidth (e.g., 2.5 KHz). FingerIO [26] develops a novel device-
free tracking scheme to track a moving finger near a smartphone
or a smartwatch. CAT differs from FingerIO in that it is a device
based tracking and works for a larger distance (e.g., a few meters),
but faces synchronization problem that does not exist in device-
free tracking. AAMouse [47] is closest to this paper. Different
from [47], we estimate the distance using a new FMCW-based ap-
proach in addition to velocity measurement and fuse the two using
an effective optimization framework to enhance the accuracy and
minimize error accumulation.
RF-based schemes: RF has been widely used for localization and
tracking. ArrayTrack [45] is a pioneering fine-grained tracking sys-
tem based on WiFi by using an array of antennas. It achieves a me-
dian error of 23 cm using 16 antennas. RF-IDraw [39] achieves
high resolution and low ambiguity by placing 8 RFID antennas
with different spacing. Its median error is 3.7 cm. WiDraw [36]
enables hand-free drawing in the air by estimating angle of arrival
(AoA) based on CSI. Its median error is within 5 cm when using 25
WiFi transmitters. mTrack [41] achieves high tracking accuracy by
leveraging the phase of 60 GHz RF signals as well as sophisticated
hardware (e.g., highly directional and steerable 60 GHz antennas).
Tagoram [46] uses commercial off-the-shelf RFID for localization
and tracking. When the target moves along an unknown track (as in
our context), the median error is 12 cm. In comparison, our system
can run on commodity hardware and achieve higher accuracy.
Other sensor based schemes: IMU sensors can also be used for
motion tracking. However, its tracking error accumulates rapidly
over time due to noisy measurements and the need of double in-
tegration [47]. Kinect [1] uses depth sensors and Wii [2] uses in-
frared cameras to track movement. They both require line-of-sight
and have limited accuracy. LeapMotion [19] uses sophisticated vi-
sion techniques to recognize a wide range of gestures. Compared
with the vision based techniques, audio-based approaches are gen-
erally more efficient and flexible: its signal processing cost is low
and it works under different lighting conditions and often without
line-of-sight (e.g., under small obstacles since there exists a detour
path close to the direct one or obstacles that do not significantly
attenuate the audio signal, such as cloth and paper).

79

(a) Drawing error of CAT and AAMouse.

(a) Double circle (b) Triangle (c) Loop back

(b) Drawing error of BatTracker.

Figure 18: The drawing error comparison between different schemes. The results in figure (a) are from the CAT paper [19],
and two figures (a, b) are drawn separately because we do not have the raw data in figure (a).

(a) “ I ♥ ACM Sensys".

X(m)Y(m)

Z(
m
)

(b) Spiral.

Figure 19: “ I ♥ ACM Sensys" and a spiral drawn in the air.

Table 1: Allocated memory and CPU usage with different
numbers of particles.

particles 600 900 1200 1500 1800
Memory (MB) 9.56 11.52 12 12.33 13.02
CPU (screen on) 16.5% 17.74% 18% 18.36% 19.65%
CPU (screen off) 9.6% 11% 11.7% 12.01% 13.74%

video games and VR devices rely on additional anchor devices for
high precision tracking, and gesture tracking requires inertial sen-
sors on wearable devices which are always inaccurate. To the best
of our knowledge, BatTracker is the first to achieve high precision
tracking without any additional hardware, which makes it very
convenient and attractive for indoor device tracking.

Limitations. Despite the high accuracy and infrastructure-free
convenience we have, there exist multiple limitations which need
to be addressed in future work.

i) Tracking range.We limit the range of reliable tracking in our
current design within a space of 3 × 3 × 3m3, which is the size of a
typical bedroom and sufficient for many popular scenarios such as
video gaming, health rehabilitation training. However, the current

design is not designed for use in a larger space. Simply increasing
the gap between each acoustic measurement, thus increasing the
range, will decrease the update rate, thus the accuracy of tracking
trajectory.

ii) Device holding gesture. Due to the hardware limitations, users
have limited range of device rotation to ensure reliable acoustic
measurements. Rotating the device to an extreme orientation can
cause serious data miss, thus a tracking failure.

iii) Reference Objects. For optimal performance, BatTracker uses
three perpendicular planes as reference objects, which could be the
ceiling and side walls in a room, or large furniture such as closets,
cabinets, and tables. However, such objects are not always available.
Besides, the ambient environment may change with the movement
of the target, thus possibly the reference objects. Our current design
does not consider adaptive reference object selection.

iv) Track loss problem. Despite the sophisticated algorithms that
we propose for robust tracking, BatTracker still has a small chance
of track loss, especially when the device is not held properly or is
too far away from reference objects. Our current design can handle
moderate data missing cases, such as human body blocking when
people passing by. However the tracking can be lost if there are
significant data loss during this period.

Future Work. Our future work for BatTracker focuses on im-
proving tracking robustness, especially dealing with track loss prob-
lem. We will continue working on infrastructure-free tracking from
the following aspects:

i) Fast track recovery.We plan to design a mechanism for auto-
matical track loss detection and recovery. One intuition is from
the match between inertial data and acoustic measurements. A
lost track may show a strong inconsistency to the prediction from
inertial sensor, hence the data likelihoods tend to be very small.
By detecting such cases, we have the opportunity to detect track
loss. Then we try to find stable track candidates in a short period,

BatTracker SenSys’17, November 6–8, 2017, Delft, The Netherlands

and associate these candidates to reference objects according to the
match of inertial data.

ii) Utilize all the available objects.Our current design only utilizes
three large objects as reference, hence a large portion of measure-
ment information from other objects are not used. We will try
to leverage all stable reflections, and build a more sophisticated
algorithm to improve robustness. By selecting reference objects
dynamically, the tracking range can be expanded.

iii) Customized hardware. BatTracker presents a novel approach
for mobile device tracking in indoor environments. However, due
to the hardware limitations, the device needs to be held in a par-
ticular way to minimize data missing problem. Adding customized
omnidirectional, high-sensitivity microphones or multiple orthog-
onal microphones into existing devices can enhance the tracking
robustness, while easing or eliminating the constraints on holding
gestures.

iv) Variations among different smart phones. The audio pipelines
and hardware performance may vary among different make/models
of smart phones, which may impact the tracking performance. We
only tested a few phones including HuaWei P9 and Samsung Note3,
which prove to have similar performance. To make BatTracker
ubiquitous, more comprehensive tests on different smart phones
are needed as our future work.

8 RELATEDWORK
Device tracking has been widely deployed for virtual reality and
augmented reality, with different types of approaches in both academia
and industry. We classify the related work according to their re-
spective tracking techniques.

IMU Based Tracking. There are plenty of work using IMU sen-
sors to track walking users in indoor environments. Some [9, 22]
adopt dead-reckoning method using accelerometer and gyroscope
readings from dedicated customized hardware, which are not avail-
able in mobile devices, and they are still prone to a large margin
of errors from the double integration for distance computation.
Zee [28] further leverages the indoor map as constraints to im-
prove the tracking accuracy. In comparison, we focus on device
tracking, which requires tracking in 3D with much higher accuracy.
Our method leverages IMU sensors and microphone on commodity
mobile devices, thus is more flexible with no external hardware
requirements, and we demonstrate that it achieves better accu-
racy than previous IMU based gesture recognition [25] and device
tracking [6] approaches.

Vision Based Tracking. Kinect [3], Wii [4] and LeapMotion [2]
are all successful business products in the market for movement
tracking with customized hardware including special cameras and
depth sensors, whereas they all leverage dedicated devices and re-
quire line-of-sight, thus limiting their generality. Tanskanen et al. [34]
combine vision and mobile sensory data to track the phone and
reconstruct the 3D representation of an object, and Chen et al. [8]
employ camera networks for multi-target tracking. However, vision
approaches always encounter computation and energy bottlenecks
on commodity mobile devices, and they are sensitive to lighting
conditions and involve privacy issues. Compared with vision ap-
proaches, our method uses acoustic and inertial data, thus it can
be easily deployed on commodity mobile devices, and audio signal

processing is much more lightweight than images. Acoustic sensing
is not subject to light conditions, and has no privacy concerns.

RF Based Tracking. Currently, mainstream indoor localization
research depends on RF signatures from certain IT infrastructures.
Among them, Cricket [30] assigns 6 indoor beacon nodes for RF
and ultrasound transmission, ArrayTrack [37] deploys an array
of 16 WiFi antennas, WiDraw [32] uses 25 WiFi transmitters and
angle-of-time estimation to enable hands-free drawing, and Tago-
ram [39] leverages RFID for accurate tracking. However, they all
rely on specialized devices to obtain high tracking accuracy. Be-
sides, WiSee [27] uses Doppler shift of the WIFI signal for gesture
recognition, while tracking a device in 3D space is much more
complicated with much higher accuracy requirements. BatTracker
leverages acoustics, which has a significantly lower propagation
speed compared to wireless signal for high accuracy tracking on
commodity devices.

Acoustic Based Tracking. Due to its slow propagation speed,
acoustic signals do seem the best fit for 3D device tracking, and
there are plenty of work pursuing higher tracking accuracy. Using
Doppler shift of audio signals, researchers have designed Swad-
loon [11] for fine-grained indoor localization, and Spartacus [33] for
gesture recognition. Besides, UbiK [35], AAMouse [40], LLAP [36],
and FingerIO [21] leverage phase shift in received signals for near
field finger gesture tracking. However, they can only track moving
object within a small range around half meter, which is not suitable
for tracking in room level. CAT [19] uses Frequency Modulated
Continuous Waveform (FMCW) to track the phone movements
at sub-cm accuracy, but it relies on external speakers and needs
configuration efforts. In comparison, our method is a mobile device
only approach with comparable sub-cm accuracy and combines
inertial and acoustic data for their complementary strength, thus
obtaining high tracking accuracy.

Despite device tracking, acoustics have also been widely used for
ranging, indoor localization, and context sensing. BeepBeep [26]
and SwordFight [42] estimate the distance between two mobile de-
vices. Liu et al. [16] estimate the acoustic ranging distances between
peer phones and treat them as constraints to improve localization ac-
curacy. GuoGuo [18] uses an anchor network that transmits spatial
beacon signals and obtains centimeter-level localization accuracy.
BatMapper [44] measures the distances to multiple surrounding
walls for indoor floor plan construction, and leverages acoustic for
space classification. In terms of context sensing from audio signals,
Yang et al. [38] detect driver phone use leveraging car speakers,
ApenaApp [20] monitors chest and abdomen breathing movements,
and DopEnc [41] identifies person encounters. Compared to the
above work, BatTracker shares cross-correlation based echo de-
tection similar to some work [10, 16, 17]. However, we focus on
robust echo-object association despite echoes from many objects in
cluttered environments, which has not been addressed in previous
work.

9 CONCLUSION
In this paper, we propose BatTracker, which incorporates inertial
and acoustic data for robust, high precision and infrastructure-free
tracking in indoor environments. BatTracker leverages echoes from
nearby objects instead of external infrastructure, thus requires less

SenSys’17, November 6–8, 2017, Delft, The Netherlands Zhou et al.

cost, deployment efforts, and is more convenient to use. A prob-
abilistic multi-hypothesis tracking algorithm creates, prunes and
evolves multiple track hypotheses based on measurement evidences
to accommodate uncertainty in device position. Experiments in real
environments show that BatTracker can track a mobile device’s
movement in 3D space at sub-cm accuracy, comparable to the state-
of-the-art infrastructure based approaches, while eliminating the
needs of any additional hardware.

ACKNOWLEDGMENTS
We thank our shepherd Pei Zhang from CMU, as well as the anony-
mous reviewers who helped to improve this paper with their valu-
able feedback and comments. This work is supported in part by US
NSF CSR 1513719, CCF 1652276, CCF 1730291, a 2016 Google Fac-
ulty Research Award, and China Postdoctoral Science Foundation
(Grant 2017M610759 and 2017T100033).

REFERENCES
[1] 2017. HTC vive. (2017). http://www.vive.com.
[2] 2017. Leap Motion. (2017). http://www.leapmotion.com.
[3] 2017. Microsoft X-box Kinect. (2017). http://www.xbox.com/xbox-

one/accessories/kinect.
[4] 2017. Nintendo Wii. (2017). http://www.nintendo.com/wii.
[5] 2017. Oculus. (2017). https://www.oculus.com/.
[6] Sandip Agrawal, Ionut Constandache, Shravan Gaonkar, Romit Roy Choudhury,

Kevin Caves, and Frank DeRuyter. 2011. Using Mobile Phones to Write in Air. In
Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services. 15–28.

[7] Samuel S Blackman. 2004. Multiple hypothesis tracking for multiple target
tracking. IEEE Aerospace and Electronic Systems Magazine 19, 1 (2004), 5–18.

[8] Y. Chen, Q. Zhao, Z. An, P. Lv, and L. Zhao. 2016. Distributed Multi-Target
Tracking Based on the K-MTSCF Algorithm in Camera Networks. IEEE Sensors
Journal 16, 13 (2016), 5481–5490.

[9] Eric Foxlin. 2005. Pedestrian tracking with shoe-mounted inertial sensors. IEEE
Computer graphics and applications 25, 6 (2005), 38–46.

[10] Daniel Graham, George Simmons, David T Nguyen, and Gang Zhou. 2015. A
Software-Based Sonar Ranging Sensor for Smart Phones. IEEE Internet of Things
Journal 2, 6 (2015), 479–489.

[11] W. Huang, Y. Xiong, X. Y. Li, H. Lin, X. Mao, P. Yang, and Y. Liu. 2014. Shake and
walk: Acoustic direction finding and fine-grained indoor localization using smart-
phones. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.
370–378.

[12] Carine Hue, J-P Le Cadre, and Patrick Pérez. 2002. Tracking multiple objects
with particle filtering. IEEE transactions on aerospace and electronic systems 38, 3
(2002), 791–812.

[13] Emmanuel C Ifeachor and Barrie W Jervis. 2002. Digital signal processing: a
practical approach. Pearson Education.

[14] Rickard Karlsson and Fredrik Gustafsson. 2001. Monte Carlo data association for
multiple target tracking. Target Tracking: Algorithms and Applications (Ref. No.
2001/174), IEE 1, 13 (2001), 1–13.

[15] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. 2014. Accurate
indoor localization with zero start-up cost. In Proceedings of the 20th annual
international conference on Mobile computing and networking. ACM, 483–494.

[16] Hongbo Liu, Yu Gan, Jie Yang, Simon Sidhom, Yan Wang, Yingying Chen, and
Fan Ye. [n. d.]. Push the limit of WiFi based localization for smartphones. In ACM
Mobicom 2012.

[17] Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser.
2015. Snooping keystrokes with mm-level audio ranging on a single phone. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 142–154.

[18] Kaikai Liu, Xinxin Liu, and Xiaolin Li. 2013. Guoguo: Enabling fine-grained
indoor localization via smartphone. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services. ACM, 235–248.

[19] Wenguang Mao, Jian He, and Lili Qiu. 2016. CAT: high-precision acoustic motion
tracking. In Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking. ACM, 69–81.

[20] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Watson. 2015.
Contactless sleep apnea detection on smartphones. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services.
ACM, 45–57.

[21] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota.
2016. FingerIO: Using Active Sonar for Fine-Grained Finger Tracking. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM,
1515–1525.

[22] Hanna Nyqvist and Fredrik Gustafsson. 2013. A high-performance tracking
system based on camera and IMU. In Information Fusion (FUSION), 2013 16th
International Conference on. IEEE, 2065–2072.

[23] S. J. Orfanidis. 1996. Optimum signal processing: An introduction. 2nd Edition,
Prentice-Hall, Englewood Cliffs, NJ.

[24] Savvas Papaioannou, Hongkai Wen, Zhuoling Xiao, Andrew Markham, and Niki
Trigoni. 2015. Accurate positioning via cross-modality training. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems. ACM, 239–251.

[25] Taiwoo Park, Jinwon Lee, Inseok Hwang, Chungkuk Yoo, Lama Nachman, and
Junehwa Song. 2011. E-Gesture: A Collaborative Architecture for Energy-efficient
Gesture Recognition with Hand-worn Sensor and Mobile Devices. In Proceedings
of the 9th ACM Conference on Embedded Networked Sensor Systems. 260–273.

[26] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin Li, and Kun Tan. 2007.
BeepBeep: A High Accuracy Acoustic Ranging System using COTS Mobile De-
vices. In ACM SenSys.

[27] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-
home Gesture Recognition Using Wireless Signals. In Proceedings of the 19th
Annual International Conference on Mobile Computing & Networking. 27–38.

[28] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. 2012. Zee: Zero-effort
Crowdsourcing for Indoor Localization. In Mobicom.

[29] Donald Reid. 1979. An algorithm for tracking multiple targets. IEEE transactions
on Automatic Control 24, 6 (1979), 843–854.

[30] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. 2004.
Tracking Moving Devices with the Cricket Location System. In Proceedings of
the 2Nd International Conference on Mobile Systems, Applications, and Services.
190–202.

[31] AndrewG Stove. 1992. Linear FMCW radar techniques. In IEE Proceedings F-Radar
and Signal Processing, Vol. 139. IET, 343–350.

[32] Li Sun, Souvik Sen, Dimitrios Koutsonikolas, and Kyu-Han Kim. 2015. WiDraw:
Enabling Hands-free Drawing in the Air on Commodity WiFi Devices. In Pro-
ceedings of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom ’15). 77–89.

[33] Zheng Sun, Aveek Purohit, Raja Bose, and Pei Zhang. 2013. Spartacus: Spatially-
aware Interaction for Mobile Devices Through Energy-efficient Audio Sensing.
In Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’13). ACM, New York, NY, USA, 263–276.
https://doi.org/10.1145/2462456.2464437

[34] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and M. Pollefeys. 2013.
Live Metric 3D Reconstruction on Mobile Phones. In 2013 IEEE International
Conference on Computer Vision. 65–72.

[35] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiqui-
tous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-
grained Keystroke Localization. In Proceedings of ACM MobiSys. 14–27.

[36] Wei Wang, Alex X Liu, and Ke Sun. 2016. Device-free gesture tracking using
acoustic signals. In Proceedings of the 22nd Annual International Conference on
Mobile Computing and Networking. ACM, 82–94.

[37] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: a fine-grained indoor location
system. In USENIX NSDI.

[38] Jie Yang, Simon Sidhom, Gayathri Chandrasekaran, Tam Vu, Hongbo Liu, Nicolae
Cecan, Yingying Chen, Marco Gruteser, and Richard P. Martin. 2011. Detecting
Driver Phone Use Leveraging Car Speakers. In ACM MobiCom.

[39] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao, Mo Li, and Yunhao Liu. 2014.
Tagoram: Real-time Tracking of Mobile RFID Tags to High Precision Using COTS
Devices. In Proceedings of the 20th Annual International Conference on Mobile
Computing and Networking (MobiCom ’14). 237–248.

[40] Sangki Yun, Yi-Chao Chen, and Lili Qiu. 2015. Turning a mobile device into a
mouse in the air. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 15–29.

[41] Huanle Zhang, Wan Du, Pengfei Zhou, Mo Li, and Prasant Mohapatra. 2016.
DopEnc: acoustic-based encounter profiling using smartphones. In Proceedings of
the 22nd Annual International Conference on Mobile Computing and Networking.
ACM, 294–307.

[42] Zengbin Zhang, David Chu, Xiaomeng Chen, and Thomas Moscibroda. 2012.
SwordFight: enabling a new class of phone-to-phone action games on commodity
phones. In Proceedings of the 10th international conference on Mobile systems,
applications, and services. ACM, 1–14.

[43] Mingmin Zhao, Tao Ye, Ruipeng Gao, Fan Ye, Yizhou Wang, and Guojie Luo. 2015.
Vetrack: Real time vehicle tracking in uninstrumented indoor environments. In
Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems.
ACM, 99–112.

[44] Bing Zhou, Mohammed Elbadry, Ruipeng Gao, and Fan Ye. 2017. BatMapper:
Acoustic Sensing Based Indoor Floor Plan Construction Using Smartphones.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 42–55.

https://doi.org/10.1145/2462456.2464437

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	4 BatTracker Design
	4.1 Acoustic Sensing

	5 Tracking Algorithm
	5.1 Track Initiation
	5.2 Track Updating

	6 Evaluation
	6.1 Acoustic Measurements
	6.2 Tracking Performance
	6.3 Drawing Evaluation
	6.4 Computation Complexity

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

