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1 CPOG Example

Figure 1 illustrates an example formula and shows how the CPOG file declares its POG
representation. The input formula (A) consists of five clauses over variables x1, x2, x3, and
x4. The generated POG (B) has six nonterminal nodes representing four products and two
sums. We name these by the node type (product p or sum s), subscripted by the ID of the
extension variable. The first part of the CPOG file (C) declares these nodes using clause IDs
that increment by three or four, depending on whether the node has two children or three.
The last two nonzero values in the sum declarations are the hint providing the required
mutual exclusion proof.

1.1 Node Declarations

We step through portions of the file to provide a better understanding of the CPOG proof
framework. Figure 1(D) shows the defining clauses that are implicitly defined by the POG
operation declarations. These do not appear in the CPOG file. Referring back to the
declarations of the sum nodes in Figure 1(C), we can see that the declaration of node s7 had
clause IDs 7 and 10 as the hint. We can see in Figure 1(A) that these two clauses form a
RUP proof for the clause p5 ∨ p6, showing that the two children of s7 have disjoint models.
Similarly, node s10 is declared as having clause IDs 16 and 19 as the hint. These form a RUP
proof for the clause p8 ∨ p9, showing that the two children of s10 have disjoint models.

1.2 Forward Implication Proof

Figure 1(E) provides the sequence of assertions leading to unit clause 36, consisting of the
literal s10. This clause indicates that s10 is implied by the input clauses, i.e., any total
assignment α satisfying the input clauses must have α(s10) = 1. Working backward, we
can see that clause 29 indicates that variable p8 will be implied by the input clauses when
α(x1) = 0, while clause 34 indicates that node p9 will be implied by the input clauses when
α(x1) = 1. These serve as the hint for clause 36.
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2 Certified Knowledge Compilation

(A) Input Formula

ID Clauses

1 -1 3 -4 0
2 -1 -3 4 0
3 3 -4 0
4 1 -3 4 0
5 -1 -2 0

(C) POG Declaration

ID CPOG line Explanation

6 p 5 -3 -4 0 p5 = x3 ∧p x4

9 p 6 3 4 0 p6 = x3 ∧p x4

12 s 7 5 6 7 10 0 s7 = p5 ∨p p6

15 p 8 -1 7 0 p8 = x1 ∧p s7

18 p 9 1 -2 7 0 p9 = x1 ∧p x2 ∧p s7

22 s 10 8 9 16 19 0 s10 = p8 ∨p p9

r 10 Root r = s10

(B) POG Representation
r

x1

x2

x3

x4

∨p

∧p ∧p

∨p

∧p ∧p

s10

p9 p8

s7

p6 p5

(D) Defining Clauses

ID Clauses Explanation

6 5 3 4 0 Define p5

7 -5 -3 0
8 -5 -4 0

9 6 -3 -4 0 Define p6

10 -6 3 0
11 -6 4 0

12 -7 5 6 0 Define s7

13 7 -5 0
14 7 -6 0

15 8 1 -7 0 Define p8

16 -8 -1 0
17 -8 7 0

18 9 -1 2 -7 0 Define p9

19 -9 1 0
20 -9 -2 0
21 -9 7 0

22 -10 8 9 0 Define s10

23 10 -8 0
24 10 -9 0

(E) CPOG Assertions

ID Clause Hint Explanation

25 a 5 1 3 0 3 6 0 x1 ∧ x3 ⇒ p5

26 a 6 1 -3 0 4 9 0 x1 ∧ x3 ⇒ p6

27 a 3 7 1 0 13 25 0 x3 ∧ x1 ⇒ s7

28 a 7 1 0 27 14 26 0 x1 ⇒ s7

29 a 8 1 0 28 15 0 x1 ⇒ p8

30 a 5 -1 3 0 1 6 0 x1 ∧ x3 ⇒ p5

31 a 6 -1 -3 0 2 9 0 x1 ∧ x3 ⇒ p6

32 a 3 7 -1 0 13 30 0 x3 ∧ x1 ⇒ s7

33 a 7 -1 0 32 14 31 0 x1 ⇒ s7

34 a 9 -1 0 5 33 18 0 x1 ⇒ p9

35 a 1 10 0 23 29 0 x1 ⇒ s10

36 a 10 0 35 24 34 0 s10

(F) Input Clause Deletions

CPOG line Explanation

d 1 36 8 10 12 16 21 22 0 Delete clause 1
d 2 36 7 11 12 16 21 22 0 Delete clause 2
d 3 36 8 10 12 17 19 22 0 Delete clause 3
d 4 36 7 11 12 17 19 22 0 Delete clause 4
d 5 36 16 20 22 0 Delete clause 5

Figure 1 Example formula (A), its POG representation (B), and its CPOG proof (C), (E), and
(F)
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1.3 Reverse Implication Proof
Figure 1(F) shows the RUP proof steps required to delete the input clauses. Consider the first
of these, deleting input clause x1 ∨ x3 ∨ x4. The requirement is to show that there is no total
assignment α that falsifies this clause but assigns α(s10) = 1. The proof proceeds by first
assuming that the clause is false, requiring α(x1) = 1, α(x3) = 0, and α(x4) = 1. The hint
then consist of unit clauses (e.g., clause 36 asserting that α(p10) = 1) or clauses that cause
unit propagation. Hint clauses 8 and 10 force the assignments α(p5) = α(p6) = 0. These,
plus hint clause 12 force α(s7) = 0. This, plus hint clauses 16 and 21 force α(p8) = α(p9) = 0,
leading, via clause 22, to α(s10) = 0. But this contradicts clause 36, completing the RUP
proof. The deletion hints for the other input clauses follow similar patterns—they work from
the bottom nodes of the POG upward, showing that any total assignment that falsifies the
clause must assign α(s10) = 0.

Deleting the asserted clauses is so simple that we do not show it. It involves simply
deleting the clauses from clause number 35 down to clause number 25, with each deletion
using the same hint as were used to add that clause. In the end, therefore, only the defining
clauses for the POG nodes and the unit clause asserting s10 remain, completing a proof that
the POG is logically equivalent to the input formula.

Observe that the forward implication proof shown in Figure 1 must “visit” nodes p5 and
p6 twice, separately considering assignments where α(x1) = 1 (clauses 25 and 26) and where
α(x1) = 1 (clauses 30 and 31). Section 2.3 shows how to use a lemma such that these nodes
are each only visited once.

2 Optimizations for Forward Implication Proofs

The two optimizations we have implemented exploit the power of our general resolution
framework to define new structures within the proof. They create new product nodes that
are not part of the POG representation.

2.1 Literal Grouping
A single recursive step of validate can encounter product nodes having many literals as
children. The naive formulation of validate considers each literal ℓ ∈ λ separately. Literal
grouping allows all literals to be validated with a single call to a SAT solver. It collects
those literals ℓ1, ℓ2, . . . , ℓm that cannot be validated by BCP and defines a product node v
having these literals as children. The goal then becomes to prove that any total assignment
must yield 1 for extension variable v. A single call to the solver can generate this proof by
invoking it on the formula ψ|ρ ∪ θv|{v}, which should be unsatisfiable. The proof steps can
be mapped back into clause addition steps in the CPOG file, incorporating the input clauses
and the defining clauses for v into the hints.

2.2 Lemmas
As we have noted, the recursive calling of validate starting at root r effectively expands
the POG into a tree, and this can lead to an exponential number of calls. These shared
subgraphs arise when the knowledge compiler employs clause caching to detect that the
simplified set of clauses arising from one partial assignment to the literals matches that of a
previous partial assignment [1]. When this dec-DNNF node is translated into POG node u,
the proof generator can assume (and also check), that there is a simplified set of clauses γu
for which the subgraph with root u is its POG representation.
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The proof generator can exploit the sharing of subgraphs by constructing and proving a
lemma for each node u having indegree(u) > 1. This proof shows that any total assignment
α that satisfies formula γu and the defining clauses for the POG must yield α(u) = 1. This
lemma is then invoked for every node having u as a child. As a result, the generator will
make recursive calls during a call to validate only once for each node in the POG.

The challenge for implementing this strategy is to find a way to represent the clauses
for the simplified formula γu in the CPOG file. Some may be unaltered input clauses, and
these can be used directly. Others, however will be clauses that do not appear in the input
formula. We implement these by adding POG product nodes to the CPOG file to create the
appropriate clauses. Consider an argument clause C ∈ γu with C = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk. If we
define a product node v with arguments ℓ1, ℓ2, . . . , ℓk, we will introduce a defining clause
v ∨ ℓ1 ∨ ℓ2 ∨ · · · ℓk. We call this a synthetic clause having v as the guard literal. That is,
a partial assignment ρ such that ρ(v) = 0 will activate the clause, causing it to represent
argument clause C. On the other hand, a partial assignment with ρ(v) = 1 will cause the
clause to become a tautology and therefore have no effect.

Suppose for every clause Cj ∈ γu that does not correspond to an input clause, we generate
a synthetic clause C ′

j with guard literal vj , for 1 ≤ j ≤ m. Let γ′
u be the formula where each

clause Cj is replaced by synthetic clause C ′
j , while input clauses in γu are left unchanged.

Let β = {v1, v2, . . . , vm}. Invoking validate(u, β, γ′
u) will then prove a lemma, given by the

target clause u ∨ v1 ∨ v2 ∨ · · · ∨ vm, showing that any total assignment α that activates the
synthetic clauses will have α(u) = 1.

Later, when node u is encountered by a call to validate(u, ρ, ψ), we invoke the lemma
by showing that each synthetic clause Cj matches some simplified clause in ψ|ρ. More
precisely, for 1 ≤ j ≤ m, we use clause addition to assert the clause vj ∨

∨
ℓ∈ρ ℓ, showing that

synthetic clause Cj will be activated. Combining the lemma with these activations provides
a derivation of the target clause for the call to validate.

Observe that the lemma structure can be hierarchical, since a shared subgraph may
contain nodes that are themselves roots of shared subgraphs. Nonetheless, the principles
described allow the definition, proof, and applications of a lemma for each shared node in
the graph. For any node u, the first call to validate(u, ρ, ψ) may require further recursion,
but any subsequent call can simply reuse the lemma proved by the first call.

2.3 Lemma Example
Figure 2 shows an alternate forward implication proof for the example of Figure 1 using
a lemma to represent the shared node s7. We can see that the POG with this node as
root encodes the Boolean formula x3 ↔ x4, having a CNF representation consisting of the
clauses {x3, x4} and {x3, x4}. The product node declarations shown in Figure 2(A) create
synthetic clauses 25 and 28 to encode these arguments with activating literals v11 and v12,
respectively. Clauses 31–34 then provide a proof of the lemma, stating that any assignment
α that activates these clauses will assign 1 to s7. Clauses 35 and 36 state that an assignment
with α(x1) = 0 will cause the first synthetic clause to activate due to input clause 3, and it
will cause the second synthetic clause to activate due to input clause 4. From this, clause 37
can use the lemma to state that assigning 0 to x1 will cause s7 to evaluate to 1. Similarly,
clauses 39 and 40 serve to activate the synthetic clauses when α(x1) = 1, due to input clauses
1 and 2, and clause 41 then uses the lemma to state that assigning 1 to x1 will cause s7 to
evaluate to 1.

In this example, adding the lemma increases the proof length, but that is only because it
is such a simple formula.
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(A) Additional nodes

ID CPOG line Explanation

25 p 11 -3 4 0 v11 = x3 ∧p x4

28 p 12 3 -4 0 v12 = x3 ∧p x4

(B) Implicit Clauses

ID Clauses Explanation

25 11 3 -4 0 Argument clause {x3, x4}, activated by v11

26 -11 -3 0
27 -11 4 0

28 12 -3 4 0 Argument clause {x3, x4}, activated by v12

29 -12 3 0
30 -12 -4 0

(C) CPOG Assertions

ID Clause Hint Explanation

Lemma Proof
31 a 5 11 12 3 0 25 6 0 (v11 ∧ v12) ∧ x3 ⇒ p5

32 a 6 11 12 -3 0 28 9 0 (v11 ∧ v12) ∧ x3 ⇒ p6

33 a 3 7 11 12 0 13 31 0 (v11 ∧ v12) ∧ x3 ⇒ s7

34 a 7 11 12 0 33 14 32 0 (v11 ∧ v12) ⇒ s7

Lemma Application #1
35 a -11 1 0 26 27 3 0 x1 ⇒ v11

36 a -12 1 0 29 30 4 0 x1 ⇒ v12

37 a 7 1 0 35 36 34 0 x1 ⇒ s7

38 a 8 1 0 37 15 0 x1 ⇒ p8

Lemma Application #2
39 a -11 -1 0 26 27 1 0 x1 ⇒ v11

40 a -12 -1 0 29 30 2 0 x1 ⇒ v12

41 a 7 -1 0 39 40 34 0 x1 ⇒ s7

42 a 9 -1 0 5 41 18 0 x1 ⇒ p9

43 a 1 10 0 23 38 0 x1 ⇒ s10

44 a 10 0 43 24 42 0 s10

Figure 2 Example of lemma definition, proof, and application
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3 More Information about the Formally Verified Checker

Our verified toolchain has been implemented in Lean 4, which is based on a formal logical
foundation in which expressions have a computational interpretation. As with other proof
assistants like Isabelle and Coq, a function defined within the formal system can be compiled
to efficient code. At the same time, we can state and prove claims about the function within
the system, thereby verifying that the functions compute the intended results.

Our code is contained in the directory ProofChecker. The main checker loop is imple-
mented in Checker/CheckerCore.lean. That file defines a structure PreState that contains
all the relevant data structures, which include the input CNF formula, the clause database,
the POG under construction, and the root literal. We define a State of the checker to be
a PreState that satisfies all the invariants that we need to establish the final result, and
the bulk of our work involved showing that these are indeed preserved by each step of the
proof, which modifies the clause database and the POG. The ring evaluator and model
counter are contained in the Count directory. Here we provide a few additional notes on the
implementation and clarify the sense in which the toolchain has been verified.

3.1 Implementation notes
When thinking about the formal verification, it is helpful to distinguish between the data
structures that play a role in the code that is executed and the definitions that serve as
a mathematical reference, allowing us to state our specifications and prove that they are
met. Among the former is our representation of CNF formulas: a literal is represented as a
nonzero integer, a clause is an array of literals, and a CNF formula is an array of clauses.

def ILit := { i : Int // i ̸= 0 }
abbrev IClause := Array ILit
abbrev ICnf := Array IClause

We define the clause database ClauseDb as a hashmap that stores each clause together with
a flag indicating whether it has been deleted. Each element of a POG is either a variable, a
binary disjunction (sum), or an arbitrary conjunction (product):

inductive PogElt where
| var : Var → PogElt
| disj : Var → ILit → ILit → PogElt
| conj : Var → Array ILit → PogElt

In the first case, the argument x in the expression var x is the index of an original variable;
in disj x left right and conj x args it is an extension variable appearing in the CPOG
file. Note that representing edges as literals allows us to negate the arguments to disj and
conj. A Pog is then an array of PogElt that is well-founded in the sense that each element
depends only on prior elements in the array.

On the mathematical side, we define propositional formulas and their semantics in the usual
way. Functions ILit.toPropForm, IClause.toPropForm, ICnf.toPropForm, and Pog.toPropForm
relate our data structures to propositional formulas and their semantics. For example, given
a literal u, Pog.toPropForm P u denotes the (unnegated or negated) interpretation of the
node corresponding to u in the POG P as a propositional formula ϕu/¬ϕu over the original
variables. Lean provides us with convenient “anonymous projector” notation that allows us
to write P.toPropForm u instead of Pog.toPropForm P u when P has type Pog, C.toPropForm
instead of IClause.toPropForm C when C has type IClause, etc.
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In order to reason about the behavior of the checker, we found it important to work
with propositional formulas modulo logical equivalence, a structure known in logic as the
Lindenbaum–Tarski algebra. We defined the quotient and lifted the Boolean operations and
the entailment relation to this new type. The advantage is that equivalent formulas give rise
to equal elements in the quotient. This makes it much easier to prove equivalences involving
complicated expressions, since it enables us to substitute elements of the quotient for others
even when the corresponding formulas are merely equivalent but not equal. This gave rise to
auxiliary challenges, however. For example, it is no longer straightforward to say that an
element of the quotient “depends” on a variable, since equivalent formulas can have different
variables—consider x ∨ ¬x and ⊤. Instead, we made use of a semantic notion of dependence,
in which an element ϕ of the quotient depends on a variable if and only if for some truth
assignment the value of ϕ changes when the assignment to that variable is flipped.

3.2 Trust

In this subsection, we clarify what has been verified and what has to be trusted. Recall that
our first step is to parse CNF and CPOG files in order to read in the initial formula and the
proof. We do not verify this step. Instead, the verified checker exposes flags --print-cnf
and --print-cpog which reprint the consumed formula or proof, respectively. Comparing
this to the actual files using diff provides an easy way of ensuring that what was parsed
matches their contents. This involves trusting only the correctness of the print procedure
and diff. Similarly, if one wants to establish the correctness of the POG contained in the
CPOG file, one can print out the POG that is constructed by the checker and compare.

Lean’s code extraction replaces calculations on natural numbers and integers with efficient
but unverified arbitrary precision versions. Lean also uses an efficient implementation of
arrays; within the formal system, these are defined in terms of lists, but code extraction
replaces them with dynamic arrays and uses reference counting to allow destructive updates
when it is safe to do so [4]. Finally, Lean’s standard library implements hashmaps in terms
of arrays. Many of the basic properties of hashmaps have been formally verified, but not all.
In particular, we make use of a fold operation whose verification is not yet complete. Thus
our proofs depend on the assumption that the fold operation has the expected properties.

In summary, in addition to trusting Lean’s foundation and kernel checker, we also have
to trust that code extraction respects that foundation, that the implementation of the fold
operation for hashmaps satisfies its description, and that, after parsing, the computation
uses the correct input formula. All of our specifications have been completely proven and
verified relative to these assumptions.

4 Detailed Experimental Results

Our experiments are designed to evaluate the following:
whether our toolchain can handle challenging benchmark problems,
the effectiveness of some design choices and optimizations,
whether our toolchain can perform end-to-end verification with preprocessed formulas,
the comparative performance of the prototype and verified checkers, and
how the performance of our toolchain compares to that of related verification toolchains.
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4.1 Experimental Setup
As a test machine, we used a 2021 MacBook Pro laptop having a 3.2 Ghz Apple M1 processor
and with 64 GB of physical memory. We also used an external 3 TB solid-state disk drive
with an advertised read/write speed of one gigabit per second. Despite being a laptop, this
configuration is somewhat more powerful than the nodes typically found in server clusters.
The fast access to storage is especially important due to the very large files generated and
processed by the tools. Our tools generated individual files with over 160 gigabytes of data.

For benchmarks, we downloaded 100 files each from the 2022 standard and weighted
model counting competitions:

https://mccompetition.org/2022/mc_description.html

We found that 20 of these were duplicates across the two tracks, yielding a total of 180
unique benchmark problems, ranging in size from 250 to 2,753,207 clauses.

Our default configuration for the proof generator used the structural method for the
forward implication proof, with the two optimizations of literal grouping and lemmas. Running
with a time limit of 4000 seconds,1 D4 was able to generate dec-DNNF representations for
124 of these, and it timed out on the rest. Our proof generator was able to convert all of
the generated dec-DNNF graphs into POGs and determine how many defining clauses they
would generate. A POG operation with k arguments requires k + 1 defining clauses, and so
the total number of defining clauses in POG P equals the number of nonterminal nodes plus
the number of edges in the graph, corresponding to our definition of |P |. The number of
defining clauses ranged from 304 to 2,761,457,765 with a median of 848,784.

4.2 Performance of the Proof Generator and Checker
For each of the 124 dec-DNNF graphs generated by D4, we ran our proof generator and
prototype checker, limiting proof generation to 10,000 seconds. We ran the programs to
generate and check one-sided proofs for the graphs, again with a time limit of 10,000 seconds
for proof generation.

Figure 3 summarizes our results in terms of the time required by D4 (X axis) versus the
sum of the times for proof generation, checking, and counting (Y axis). We were able to
complete a full validation for 108 of the 124 benchmarks, with times ranging from fractions
of a second to 13,144 seconds, with a median of 71.6 seconds.

Relative to the runtime for D4, two problems ran faster with the generator, checker, and
counter. These were for problems having small numbers of models (relative to the number of
variables), and so most of the time spent by both D4 and our proof generator was in running
a CDCL solver to search the very sparse solution space. CaDiCal generally outperforms
the miniSAT-based solver used by D4. At the other extreme, one problem that required only
19 seconds for D4 required 8657 seconds to generate a proof and 45 seconds to check it (and
count). This benchmark appears to stem from weak performance by our implementation of
BCP. Overall the ratios between the combined time for generation, checking, and counting
versus the time for D4 had a harmonic mean of 5.5.

Of the 16 benchmarks that could not be fully validated, one had so many defining clauses
that it overflowed the 32-bit signed integers our programs use for clause identifiers. Another
exited due to the virtual memory limit imposed by the operating system, and the other 14

1 All measured times in this document are actual elapsed times, not CPU times.

https://mccompetition.org/2022/mc_description.html
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timed out. Of the 15 that did not overflow the clause counter, we were able to complete a
one-sided verification for 9, but the other 6 timed out. Overall, we were able to provide some
level of verification for 94% of the benchmark problems.

Figure 4 compares the number of defining clauses (X axis) with the total number of
clauses (Y axis) for the 108 problems that were fully verified. These totals include the
defining clauses for the POG, the additional defining clauses introduced to support literal
grouping and lemmas, and the clauses added by RUP steps in the forward implication proof.
These totals ranged from 554 to 770,382,773, with a median of 1,719,245. The ratios of the
total clauses versus defining clauses ranged from 1.54 to 6073, with a harmonic mean of 3.13.
The high numbers were for problems having very few models, and so the proof clauses must
encode large proofs of unsatisfiability.

4.3 Monolithic Forward Implication Proofs
To assess the relative merits of the two approaches to forward implication proof generation,
we ran the proof generator in monolithic mode on the 92 problems for which the combination
of structural proof generation, checking, and counting required at most 3000 seconds and then
kept only those measurements for which at least one of the two approaches had combined
times of at most 1000 seconds. There were a total of 83 such problems. Figures 5 and 6 show
comparisons between the two approaches in terms of time and total clauses.

Examining Figure 5, we can see that the monolithic approach ran faster than the structural
approach for 23 of the problems, including a case where the generator, checker, and counter
required only one second, versus 71 seconds for the structural approach. On the other hand,
the monolithic approach timed out for 13 of the cases and was slower for the other 37. In
general, we can see the monolithic approach faring worse on larger problems.

Figure 6 shows the total number of clauses for the two approaches for the 70 cases where
both approaches completed within 1000 seconds. As can be seen, the monolithic approach
consistently produces shorter proofs, perhaps due to the benefits of the proof trimming by
drat-trim.

These experiments suggest that a hybrid of the two approaches might yield the best
results in terms of consistency, runtime, and proof size. It would begin the recursive descent
of validate according to a structural approach, but monolithically generate the proof once it
encounters a sufficiently small subgraph.

4.4 Impact of Optimizations
To assess the impact of the two optimizations: literal grouping and lemmas, we ran the
proof generator on the 80 problems for which the combination of the two optimizations
yielded proofs totaling at most 10 million clauses. Compared to the problems used to assess
monolithic proof generation (Section 4.3), this set included one that had a short proof but
long runtime and excluded four that had short runtimes but long proofs. We then ran the
proof generator on all three combinations of the optimizations being partially or totally
disabled. Figure 7 shows how disabling these optimizations affected the total number of
clauses in the proofs, where the X axis indicates the total number with both optimizations
enabled, while the Y axis indicates the number with one (left) or both (right) optimizations
disabled.

As the figures illustrated, each optimization on its own can shorten the proofs, sometimes
substantially, and the two combine to have even greater effect. Of the 80 benchmark problems
evaluated, and comparing with both optimizations disabled, 47 had the number of proof
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clauses reduced by at least a factor of 2 by using lemmas, 14 by using literal merging, and 60
by enabling both optimizations. In the extreme cases, a lack of lemmas caused one proof to
grow by a factor of 52.5, while a lack of literal grouping caused another proof to grow by a
factor of 39.6.

The time performance of these optimizations is less dramatic, but still significant. Lemmas
sometimes made proof generation slower, but in one case ran 38× faster. Similarly, literal
grouping could take longer, but in one case ran 3.9× faster.

Overall, it is clear that these two optimizations are worthwhile, and sometimes critical,
to success for some benchmarks.

4.5 Certifying Preprocessed Formulas
The D4 knowledge compiler can optionally perform three different forms of preprocessing
on the input formula. These transform the formula while preserving logical equivalence [3].
Proving that the combination of preprocessing plus knowledge compilation preserved logical
equivalence would be a valuable capability. However, proof generators that operate based on
the structure of the input clauses, including our structural approach, will generally fail in
this case, since the compilation was not based on the original input clauses.

One strength of monolithic proof generation is that it makes no assumptions about how
the compiled representation was generated. A complete proof-generating SAT solver could,
in principle, always generate the forward implication proof, as long as forward implication
holds. To test this hypothesis, we ran our proof framework with preprocessing enabled on
the same 83 benchmarks as in Section 4.3. We measured the time for two entire toolchains:
one with compilation, proof generation, checking, and counting, and the other starting with
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preprocessing and then having the same steps as the other. The results are summarized in
Figures 8 and 9. Setting a time limit of 1000 seconds, 70 of the formulas completed without
preprocessing, while 69 did so with preprocessing. The one that timed out with preprocessing
did so due to the excessive time required for preprocessing. Of the 69, 53 ran faster with
preprocessing, while 15 ran slower. The sizes of the generated CPOG proofs were more
variable: 31 had fewer clauses with preprocessing, 21 had more, and 17 were identical.

4.6 Evaluation of the Verified Checker

We ran the Lean 4 checker on the 80 benchmark problems for which the generated CPOG
file had at most 10 million total clauses. These are the same benchmarks used in evaluating
the optimizations (Section 4.4). All of the checks completed and confirmed the outcome of
the prototype checker.

Figure 10 shows the performance of both the Lean 4 checker and the prototype checker on
the Y axis, as functions of the total number of clauses on the X axis. As would be expected,
the Lean 4 checker consistently runs slower than the prototype checker. The ratio of the
runtime for Lean 4 versus the runtime for the prototype checker had a harmonic mean of
5.94.

Importantly, however, it can be seen that both checkers show the same overall performance
trends. The ratio of the two runtimes was less than 8.0 for all but three small benchmarks.
This seems like a reasonable price to pay for a rigorous guarantee of correctness, and we are
confident that we can reduce this gap with more effort in optimizing the verified checker.
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Figure 11 Times for CD4 Toolchain versus CPOG Toolchain. Times include knowledge compila-
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5 Comparison with other Certification Frameworks

This section provides more insights into how our proof framework (CPOG) compares with
other work in certified knowledge compilation and model counting.

5.1 Comparison with CD4 Framework

Figure 11 shows the results of a set of experiments comparing the performance of our toolchain
(CPOG) versus one based on CD4. It shows the timings for the 110 benchmarks for which
either the CPOG toolchain or the CD4 toolchain completes in less than 1000 seconds. Both
toolchains include compilation, in addition to proof generation and checking. Of these, 80
completed for both toolchains, 28 timed out or failed with the CPOG toolchain, and 2 timed
out for the CD4 toolchain. The data clearly show that the CD4 toolchain can handle larger
benchmarks and generally runs faster. Only 7 of the 80 that completed with both toolchains
ran faster with the CPOG toolchain. For these 80, the toolchain based on CD4 ran faster by
a harmonic mean factor of 19.8×.

On the other hand, the CD4 proof generation and checking is tightly connected to the
operation of D4, and every change to the program could require changes to the proof steps
and possibly changes to the proof framework. For example, we have found that CD4 does
not work properly when the compiler makes use of its internal preprocessor.
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Figure 12 Running Time for MICE versus CPOG proof chains. Times include proof generation,
checking, and counting. Timeouts are shown as points on the dashed lines.

5.2 Comparison with the MICE Framework
To compare the performance of our toolchain versus that of MICE [2], we consider how
the combination of proof generation, proof checking, and counting in the CPOG toolchain
compares to the time to run their proof generator nnf2trace and checker sharptrace. We
ran their tools on the 92 benchmark problems for which our toolchain requires at most 3000
seconds and retained the 84 data points for which at least one of the toolchains completes in
under 1000 seconds.

We can summarize the results as:
84 total data points
76 were completed by both programs in under 1000 seconds
Of those 21 were faster with MICE, 55 with CPOG
7 completed with CPOG under 1000 seconds but exceeded that threshold for MICE
1 completed with MICE under 1000 seconds but exceeded that threshold for CPOG

The detailed results are shown in Figure 12. As can be seen, the comparative runtimes
are highly variable, reflecting the fact that the two toolchains differ fundamentally in their
objectives and their approaches.

One shortcoming of nnf2trace can be seen in the near-vertical series of points in the
upper-lefthand corner. These correlate with a similar set of points along the left in Figure 7.
Like the naive implementation of validate, their program recursively traverses the graph
representation of a formula, effectively expanding it into a tree. They lack an optimization
analogous to lemmas.

We have not tried the MICE toolchain on larger benchmarks, but we suspect it would
encounter significant scaling limitations.
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