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Abstract

As the current existing literature on the topic of HPC is very dispersed, we performed a Systematic Mapping Study (SMS) in
the context of the European COST Action cHiPSet. This literature study maps characteristics of various programming languages
for data-intensive HPC applications, including category, typical user profiles, effectiveness, and type of articles.

We organised the SMS in two phases. In the first phase, relevant articles are identified employing an automated keyword-based
search in eight digital libraries. This lead to an initial sample of 420 papers, which was then narrowed down in a second phase by
human inspection of article abstracts, titles and keywords to 152 relevant articles published in the period 2006–2018. The analysis
of these articles enabled us to identify 26 programming languages referred to in 33 of relevant articles. This document is the data
companion for a paper published elsewhere and presents a detailed list of the selected papers. Besides, the document also presents
the formof our questionnaire-based survey that involved 57 HPC experts.

Keywords:
High Performance Computing (HPC), Big Data, Data Intensive Applications, Programming Languages, Domain-Specific
Languages

Email addresses: vma@fct.unl.pt (Vasco Amaral),
b.norberto@campus.fct.unl.pt (Beatriz Norberto),
mgoul@fct.unl.pt (Miguel Goulão), marco.aldinucci@unito.it
(Marco Aldinucci), siegfried.benkner@univie.ac.at (Siegfried
Benkner), andrea.bracciali@stir.ac.uk (Andrea Bracciali),
paulo.carreira@ist.utl.pt (Paulo Carreira),
edgars.celms@lumii.lv (Edgars Celms),
Luis.Correia@ciencias.ulisboa.pt (Luı́s Correia), c.grelck@uva.nl
(Clemens Grelck), karatza@csd.auth.gr (Helen Karatza),
christoph.kessler@liu.se (Christoph Kessler),
p.kilpatrick@qub.ac.uk (Peter Kilpatrick),
hfmartiniano@ciencias.ulisboa.pt (Hugo Martiniano),
imavridis@csd.auth.gr (Ilias Mavridis), sabri.pllana@lnu.se (Sabri
Pllana), alrespicio@fc.ul.pt (Ana Respı́cio), jsimao@cc.isel.ipl.pt
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Appendix A. Languages used for Data-Intensive HPC Applications

Table A.1: List of the encountered languages

Domain Specific Languages (DSLs)

CineGrid Description Language + Network Description Language

Crucible

e-Science Central WFMS

Higher-order ”chemical programming” language

Liszt

Mendeleev

MiniZinc

General Purpose Languages (GPLs)

Bobolang

C/C++

Erlang

FastFlow

Goal Language supported by RuGPlanner

Java

OpenCL

Python/R

Scout

Selective Embedded Just-In-Time Specialization

SkIE-CL

Swift

DSLs embedded in GPLs

Pipeline Composition (PiCo)

Spark Streaming and Spark SQL

Weaver
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Table A.2: CineGrid Description Language + Network Description Language [17]

CineGrid Description Language + Network Description Language

RQ1 Type Domain Specific Language

RQ2

Kind Ontology languages describing domain-specific services and network entities, for the domain of a non-public digital media data grid, in OWL
(i.e., ultimately, XML)

Purpose Formalisation of the requirements of the problem; Formalisation of the solution; Data Interpretation

Key advantages Portability, easiness of configuration, visualisation of user-initiated query results

Paradigms Declarative (Data access service configuration and deployment structure graphs expressed in OWL/XML syntax)

Concrete syntax Textual

Existing tool Interpreters

Technologies XML based technology (Jess reasoner for querying OWL ontologies)

RQ3 Users’ role Developer

Required knowledge Tools (OWL/XML editor), Languages (SQWRL query language for OWL ontologies), Hardware/Systems (Data grids), Theoretical Background
(XML database querying and reasoning)

RQ4 Effectiveness Success not evaluated

Table A.3: Crucible [9]

Crucible

RQ1 Type Domain Specific Language

RQ2

Kind Based on Java host language

Application domain Data analytic

Key advantages Portability, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Object-Oriented

Concrete syntax Textual

Existing tool Interpreters, Compilers, Tool suite

Technologies IBM Infosphere, Accumulo, HDFS

Execution stack OS (any), IO architecture (HDFS), Message Passing Middleware (IBM Infosphere)

Execution model Virtual Execution Environment (JVM), Distributed Middleware (IBM InfoSphere), Compiled code for CPU

RQ3 Users’ role End-user

Required knowledge Tools (XText), Languages (Java), Frameworks (IBM Infosphere), Hardware (CPU), Systems (Clusters), Theoretical Background (Communi-
cating Sequential Processes)

RQ4 Effectiveness Success evaluated, explicit comparison with competing approaches, quantitative comparison performed. Productivity gains brought by the
languages reported (Expressiveness and Easier to use – Qualitative). Products’ performance gains brought (Evolvability/Maintainability –
Qualitative)
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Table A.4: e-Science Central WFMS [6]

e-Science Central WFMS

RQ1 Type Domain Specific Language

RQ2

Host language Workflow blocks can be written in Java, R, Octave and Javascript

Application domain Cloud-based data analysis

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Concrete syntax Diagrammatic

Existing tool Tool suite

Technologies They describe porting of a genomics data processing pipeline from a shell-script implementation on a HPC cluster, to e-Science Central
based work-flow on Microsoft Azure cloud

RQ3 Users’ role End-user

Required knowledge Languages (workflow), Systems (Amazon AWS, Microsoft Azure)

RQ4 Effectiveness Quantitative comparison performed, compared shell-script implementation on a HPC cluster with work-flow on Microsoft Azure cloud, Pro-
ductivity gains brought (Learnability, Lower cognitive overload, easier to remember, easier to use – Qualitative and e-Science Central enables
users to design workflows for data analysis), Products’ performance gains brought (Computation efficiency and Scalability – Quantitative;
Evolvability/Maintainability – Qualitative)

Table A.5: Higher-order “chemical programming” language [13]

Higher-order “chemical programming” language

RQ1 Type Domain Specific Language

RQ2

Application domain A rule-based coordination language for asynchronous, self-organizing parallel processing of scientific workflows

Purpose Formalisation of the solution, Implement the solution

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Declarative (rule-based asynchronous coordination), Hybrid (Atoms of the scripting language are usually written in some sequential HPC
language like C)

Concrete syntax Textual

Existing tool Interpreters, Compilers

Technologies HOCL interpreter/JIT plus runtime support extensions for parallel / distributed processing, written in Java

Execution stack Message Passing Middle-ware (Java Message Service, ActiveMQ, DAIOS WS (WSDL, SOAP)), Java, HOCL Interpreter

Execution model Distributed middle-ware (Java Message Service, ActiveMQ, DAIOS WS (WSDL, SOAP)), Compiled code for CPU (using a JIT)

RQ3 Users’ role End-user

Required knowledge Languages (Java, ”chemical programming” in HOCL), Theoretical Background (Rule-based programming, ”chemical programming” for
WS/work-flow coordination)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Experimental comparison with two traditional-style work-flow systems based on 3
HPC test problems, Metrics (Time), Productivity gains brought (Learnability, Lower cognitive overload, easier to remember, expressiveness
(captures the concepts of the domain), easier to use - Qualitative), Products’ performance gains brought (Computation efficiency – quantita-
tive; Evolvability/Maintainability, Scalability – Qualitative)

4



Table A.6: Liszt [11]

Liszt

RQ1 Type Domain Specific Language

RQ2

Nature A DSL, based on Scala, for solving partial differential equations (PDEs) on unstructured meshes

Application domain Constructing mesh-based partial differential equations solvers

Purpose Implement the solution

Key advantages Portability, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional and Object-Oriented (The Liszt programming environment is based on Scala)

Concrete syntax Textual

Existing tool Compilers

Execution model The language target specific hardware and GPUs or multi-core architectures

RQ3 Users’ role Developer

Required knowledge Languages (Scala)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed. The authors ported four example applications to Liszt and ran these applications on
three platforms: a GPU, an SMP, and a cluster. They evaluate the MPI-based runtime on both the cluster and the SMP since it can run on
either platform. Metrics (Lines of Code, Time), Products’ performance gains brought (Computation efficiency and Scalability – Quantitative;
Memory Efficiency – Qualitative)

Table A.7: Mendeleev [8]

Mendeleev

RQ1 Type Domain Specific Language

RQ2

Application domain Data analytics

Key advantages Portability, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Declarative (Goal-based planning of analytic applications using an abstract model based on a semantically annotated type system)

Concrete syntax Textual

Existing tool Compilers, Tool suite

Technologies Compiler generators (IBM Infosphere Streams; Crucible), Goal-based planning of analytic applications with automatic code generation based
on Crucible DSL

Execution stack IO architecture (HDFS and others), Message Passing Middleware (IBM Infosphere Streams)

Execution model Virtual Execution Environment (JVM), Distributed Middleware (IBM InfoSphere), Compiled code for CPU

RQ3 Users’ role End-user

Required knowledge Tools (Mendeleev DSL), Languages (RDF, IBM InfoSphere, Accumulo), Frameworks (Crucible, IBM Infosphere), Hardware (CPU), Systems
(Clusters), Theoretical Background (RDF graphs)

RQ4 Effectiveness Success evaluated
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Table A.8: MiniZinc [5]

MiniZinc

RQ1 Type Domain Specific Language

RQ2

Application domain Constraint modelling language

Purpose Formalisation of the requirements of the problem, Formalisation of the solution, Implement the solution

Key advantages Usability (Effectiveness/Efficiency/ Satisfaction), Easier to express constraint problems

Paradigms Hybrid (The constraints are expressed with logic operators)

Concrete syntax Textual

Existing tool Compilers, Tool suite, IDE

Technologies The compiler compiles MiniZinc to FlatZinc, a language that is understood by a wide range of solvers

RQ3 Users’ role End-user

Required knowledge Theoretical Background (Constraint modelling)

RQ4 Effectiveness Success evaluated, Both Quantitative and Qualitative comparison performed, The article compares base version of MiniZinc with one inte-
grating the extensions, Metrics (Lines of Code, Time), Productivity gains brought (Expressiveness - Qualitative, Easier to use - Quantitative),
Products’ performance gains brought (Memory efficiency, Computation efficiency - Quantitative)

Table A.9: Bobolang [5]

Bobolang

RQ1 Type General Purpose Languages

RQ2

Nature Specification language for streaming applications

Application domain Constraint modelling language

Purpose Formalisation of the solution, Data Interpretation

Key advantages Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Declarative (it is a specification language dedicated to designing streaming applications)

Concrete syntax Textual

Existing tool Compilers

Technologies Underlying system language (e.g. C++)

Execution model Compiled code for CPU (from underlying system language)

RQ3 Users’ role Developer

Required knowledge Theoretical Background (Domain of streaming applications)

RQ4 Effectiveness Success not evaluated
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Table A.10: C/C++ [2, 3, 12, 18, 26, 29, 30]

C/C++

RQ1 Type General Purpose Languages

RQ2

Nature Specification language for streaming applications

Application domain Scientific Computing, Heterogeneous Computing

Purpose Formalisation of the requirements of the problem, Formalisation of the solution, Simulation of the problem, Simulation of the solution, Imple-
ment the solution

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Object-Oriented, Hybrid (supports heterogeneous environment and it can be event-driven)

Concrete syntax Textual and Diagrammatic

Existing tool Interpreters, Compilers, Validators, Simulators, Tool suite, IDE

Technologies GenERTiCA source code generator

Execution stack Multiple OSes

Execution model Virtual Execution Environment (self-managed), Distributed middleware (self-managed), Compiled code for CPU, Compiled code for GPU, the
language target GPUs or multi-core architectures

RQ3 Users’ role End-user and Developer

Required knowledge Languages (C/C++), Hardware (parallel and distributed systems; Grids; Clouds)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Algorithms for task scheduling are evaluated, Metrics (Time), Productivity gains
brought (Learnability - Quantitative and Lower cognitive overload, easier to remember, easier to use - Qualitative), Products’ performance
gains brought (Computation efficiency, Scalability - Quantitative and Evolvability/Maintainability, Scalability - Qualitative)

Table A.11: Erlang [31]

Erlang

RQ1 Type General Purpose Languages

RQ2

Application domain Computational and memory-intensive applications using a high number of cores (64). The use-case is urban traffic planning

Purpose Implement the solution, Data Interpretation

Key advantages Performance, Usability (Effectiveness/Efficiency/ Satisfaction)

Paradigms Functional

Concrete syntax Textual

Existing tool Interpreters, Compilers, Tool suite, IDE

Execution stack Message Passing Middleware (Erlang uses a message passing system to communicate between agents), Libraries (”exometer” for global
logging and ”lcnt” to monitor lock contention)

Execution model Virtual Execution Environment (Erlang includes a stack-based VM), the language target GPUs or multi-core architectures

RQ3 Required knowledge Languages (Erlang), Theoretical Background (Agent-oriented frameworks and Evolutionary systems)

RQ4 Effectiveness Success evaluated, Explicit comparison of the language proposal with respect to distinct settings/context/configurations, Quantitative com-
parison performed, Scalability of the different techniques when increasing the number of cores, Metrics (Number of agent reproductions)

7



Table A.12: FastFlow [1, 27]

FastFlow

RQ1 Type General Purpose Languages

RQ2

Host language C++

Application domain Streaming applications

Purpose Implement the solution

Key advantages Performance, Usability (Effectiveness/Efficiency/ Satisfaction)

Paradigms Functional, Object-Oriented

Concrete syntax Textual

Existing tool Compilers

Execution model The language target GPUs or multi-core architectures

RQ3 Users’ role End-user

Required knowledge Languages (C++), Hardware (CPU), Theoretical Background (Streaming Applications)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, The applicability of FastFlow has been illustrated by a number of studies in different
application domains including image processing, file compression and stochastic simulation, Metrics (Time), Products’ performance gains
brought (Memory Efficiency, Computation Efficiency - Quantitative)

Table A.13: Goal Language supported by RuGPlanner [15]

Goal Language supported by RuGPlanner

RQ1 Type General Purpose Languages

RQ2

Nature A declarative language for expressing extended goals, allows for continual plan revision to deal with sensing outputs, failures, long response
times or time-outs, as well as the activities of external agents; Many elements of the language are inspired by XSRL (XML Service Request
Language)

Purpose Formalisation of the requirements of the problem, Formalisation of the solution, Implement the solution, Data Interpretation

Key advantages Performance, Orchestration, Usability (Effectiveness/ Efficiency/Satisfaction)

Paradigms Declarative (Provides the user with expressive constructs for stating complex goals, beyond the mere statement of properties that should
hold in the final state), Functional (comprises a number of atomic service operations that can serve a variety of objectives with minimal
request-specific configuration), Logic (it is based on translating the domain and the goal into a Constraint Satisfaction Problem)

Concrete syntax Textual

Technologies An extended language detached from the particularities and inter-dependencies of the available services

Execution model Compiled code for CPU

RQ3 Users’ role End-user

Required knowledge Languages (Goal language)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Explicit comparison of the language proposal with respect to distinct set-
tings/context/configurations, Two test cases. They performed a number of tests regarding the scalability of the system with respect to a
number of factors, Metrics (Lines of code, Satisfaction, Time), Productivity gains brought (Learnability, Lower cognitive overload, Easier to
remember, Expressiveness, Easier to use - Qualitative), Products’ performance gains brought (Computation efficiency, Scalability - Quantita-
tive)
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Table A.14: Java [2, 7, 23, 24, 26]

Java

RQ1 Type General Purpose Languages

RQ2

Application domain Grid w applications to Ray tracing and Sequencing; Machine Learning; Specify policies to transform divide and conquer sequential programs
into parallel executions

Purpose Formalisation of the requirements of the problem, Formalisation of the solution, Simulation of the solution, Implement the solution, Data
Interpretation

Key advantages Performance, Portability, Easiness of configuration, Orchestration and Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Object-Oriented, Hybrid (Language to schedule constraint solving)

Concrete syntax Textual

Existing tool Interpreters, Compilers

Technologies XML based technology (A XML like syntax to describe classes and methods to be scheduled)

Execution stack VM Supervisor (JVM on grid), OS (any), IO architecture (Grid), Libraries (Apache Spark, 77 Weka 3.6.0, Hadoop 0.20)

Execution model Virtual Execution Environment (Java Virtual Machine), Distributed middleware (Hadoop, Apache Spark), HPC Libraries (Apache Spark),
Bytecode for virtual machine (JVM on Grid)

RQ3 Users’ role End-user

Required knowledge Languages (Java)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Metrics (Lines of code, Time), Productivity gains brought (Easier to use, Compact
representation), Products’ performance gains brought (Computation efficiency, Scalability - Quantitative)

Table A.15: OpenCL [3, 16]

OpenCL

RQ1 Type General Purpose Languages

RQ2

Application domain CFD (any application that benefits from GPU), Big Data processing

Purpose Formalisation of the requirements of the problem, Implement the solution

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Object-Oriented

Concrete syntax Textual and Diagrammatic

Existing tool Compilers, Tool suite

Technologies GenERTiCA source code generator

Execution stack Multiple OSes supported

Execution model Distributed middleware, HPC Libraries, Bytecode for virtual machine, Compiled code for CPU, Compiled code for GPU, the language target
specific hardware and GPUs or multi-core architectures

RQ3 Users’ role End-user

Required knowledge Tools (detailed knowledge required for using OpenCL for GPUs), Languages (OpenCL), Hardware (Clusters with GPUs)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Algorithms for task scheduling are evaluated, Metrics (Time), Productivity gains
brought (Learnability, lower cognitive overload, easier to remember, easier to use - Qualitative), Products’ performance gains brought (Com-
putation efficiency - Quantitative and Evolvability/Maintainability - Qualitative)
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Table A.16: Python/R [2, 14, 20]

Python/R

RQ1 Type General Purpose Languages

RQ2

Application domain High-level parallel programming language for scientific computing, distributed applications

Purpose Formalisation of the requirements of the problem, Formalisation of the solution, Simulation of the problem, Simulation of the solution, Imple-
ment the solution, Data Interpretation

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Supports multiple programming paradigms (Object-Oriented, Imperative, Functional, )

Concrete syntax Textual and Diagrammatic

Existing tool Interpreters, Compilers, Validators, Simulators, Tool suite, IDE

Execution stack OS (Any), Message Passing Middleware (BSP model), Libraries

Execution model Virtual Execution Model (self-managed), Distributed Middleware (self-managed), Compiled code for CPU

RQ3 Users’ role End-user and Developer

Required knowledge Languages (Python/R), Hardware (parallel and distributed systems; Grids; Clouds)

RQ4 Effectiveness Success evaluated, Explicit comparison with competing approaches, Quantitative comparison performed, Metrics (Time), Productivity gains
brought (Learnability - Easier to learn and Lower cognitive overload, easier to remember, easier to use - Qualitative), Products’ performance
gains brought (Computation efficiency, Scalability - Quantitative and Scalability - Qualitative)

Table A.17: Scout [25]

Scout

RQ1 Type General Purpose Languages

RQ2

Purpose Formalisation of the solution, Implement the solution, Data Interpretation, Compiler description

Key advantages Portability, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Object-Oriented (the base language from which Scout extends is C*, which is object-oriented)

Concrete syntax Textual

Tool support Compilers

Execution model The language target specific hardware and GPUs or multi-core architectures

RQ4 Effectiveness Success evaluated, Productivity gains brought (Lower cognitive overload, Easier to use - Qualitative)

Table A.18: Selective Embedded Just-In-Time Specialization [21]

Selective Embedded Just-In-Time Specialization

RQ1 Type General Purpose Languages

RQ2

Host language Knowledge Discovery Toolbox (KDT)

Application domain Semantic Graphs

Purpose Graph Processing (Implement the solution)

Key advantages Performance, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional, Object-Oriented

Concrete syntax Textual

Existing tool Interpreters, Compilers, Tool suite

Technologies DSL frameworks (KDT), compBLAS library

Execution stack OS (any), Message Passing Middleware (MPI), Libraries (compBLAS)

Execution model HPC Libraries (compBLAS), Compiled code for CPU

RQ3 Users’ role End-user

Required knowledge Languages (Python, C++), Libraries (KDT), Hardware (CPU), Systems (Clusters), Theoretical Background (Graph Algorithms)

RQ4 Effectiveness Success evaluated, There is an explicit comparison with competing approaches, There is an explicit comparison of the language proposal
with respect to distinct settings/context/configurations, Quantitative comparison performed, Performance and coding complexity evaluation
against direct usage of Python interface of KDT and direct usage of KDT backend (i.e. compBLAS) on standard graph algorithms and
synthetic datasets (in-core), Metrics (Lines of code, Satisfaction, Time), Productivity gains brought (Learnability, Lower cognitive overload,
Easier to remember, Expressiveness, Easier to use - Qualitative), Products’ performance gains brought (Memory Efficiency, Computation
Efficiency, Scalability - Quantitative and Evolvability/Maintainability - Qualitative)
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Table A.19: SkIE-CL [10]

SkIE-CL

RQ1 Type General Purpose Languages

RQ2

Nature SkIE-CL, the programming language of the SkIE (SkIE stands for skeleton integrated environment) environment

Host language C/C++, Fortran, Java

Application domain Data mining

Purpose Implement the solution

Key advantages Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction), Enables high-level parallel programming
using skeletons

Paradigms Skeletons are used as basic constructs of coordination language (SkIE-CL)

Concrete syntax Textual and Diagrammatic

Tool support Compilers, Tool suite, IDE

Execution stack OS (Multiple: Linux, ...), Message Passing Middleware (MPI)

Execution model Compiled code for CPU

RQ3 Users’ role End-user

Required knowledge Tools (Visual SkIE), Languages (SkIE-CL), Theoretical Background (Skeletons)

RQ4 Effectiveness Success evaluated, Explicit comparison with competing approaches, Explicit comparison of the language proposal with respect to distinct
settings/context/configurations, Quantitative comparison performed, The language is compared with MPI with respect to number of lines of
code and development time, Metrics (Lines of code, Time), Productivity gains brought (Learnability, Lower cognitive overload, Easier to use
- Qualitative), Products’ performance gains brought (Evolvability/Maintainability - Qualitative; Scalability - Quantitative)

Table A.20: Swift [22, 32]

Swift

RQ1 Type General Purpose Languages

RQ2

Application domain Parallel Workflow/Distributed parallel scripting

Purpose Implement the solution

Key advantages Portability, easiness of configuration, orchestration, usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional (application components modelled as side-effect free functions)

Concrete syntax Textual

Existing tool Interpreters, Tool suite

Execution stack OS (Linux), IO architecture (POSIX), Message Passing Middleware (Globus)

Execution model Virtual Execution Environment (Cloud), Distributed Middleware (Globus Grid middleware)

RQ3 Users’ role End-user

Required knowledge Languages (Swift)

RQ4 Effectiveness Success evaluated, Quantitative comparison performed, Metrics (Time, Utilization), Productivity gains brought (Learnability, Lower cognitive
overload, easier to remember, expressiveness, easier to use - Quantitative and Qualitative), Products’ performance gains brought (Compu-
tation efficiency, evolvability/maintainability, scalability, resource utilization - Quantitative and Qualitative)
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Table A.21: Pipeline Composition (PiCo) [28]

Pipeline Composition (PiCo)

RQ1 Type Domain Specific Languages embedded in General Purpose Languages

RQ2

Host language C++

Application domain Big Data Analytics

Purpose Formalisation of the solution, Simulation of the solution, Implement the solution, Data Interpretation

Key advantages Performance, Portability, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional, Object-Oriented

Concrete syntax Textual

Existing tool Compilers, Tool suite

Execution stack OS (PiCo application can be compiled to any target platform supporting a modern C++ compiler)

Execution model The language target GPUs or multi-core architectures

RQ3 Users’ role End-user

Required knowledge Languages (C++), Frameworks (FastFlow), Theoretical Background (Batch and Streaming Applications)

RQ4 Effectiveness Success evaluated, Explicit comparison with competing approaches, (They have compared PiCo to two state-of-the-art frameworks: Spark
and Flink) and language proposal with respect to distinct settings/context/configurations, Quantitative comparison performed, They have
compared PiCo to two state-of-the-art frameworks (Spark and Flink) execution times in shared memory for both batch and stream applications,
Metrics (Time), Productivity gains brought (Expressiveness, Easier to use - Qualitative), Products’ performance gains brought (Memory
Efficiency, Computation efficiency, Scalability - Quantitative)

Table A.22: Spark Streaming and Spark SQL [19]

Spark Streaming and Spark SQL

RQ1 Type Domain Specific Languages embedded in General Purpose Languages

RQ2

Host language Spark applications can be written in Java, Scala, Python, R

Application domain Streaming analytics

Purpose Simulation of the problem, Implement the solution

Key advantages Performance, Portability, Easiness of configuration, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional (Scala), Object-Oriented (Scala)

Concrete syntax Textual

Existing tool Compilers

Execution stack OS (Linux, MS Windows, macOS), IO architecture (Spark Core), Libraries (MLlib Machine Learning Library)

Execution model Distributed Middleware (Hadoop Distributed File System (HDFS), OpenStack Swift,..), the language target GPUs or multi-core architectures

RQ3 Users’ role End-user

Required knowledge Frameworks (Apache Spark)

RQ4 Effectiveness Presented experimental results for three datasets, Metrics (Time), Products’ performance gains brought (Computation efficiency, scalability -
Quantitative)
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Table A.23: Weaver [4]

Weaver

RQ1 Type Domain Specific Languages embedded in General Purpose Languages

RQ2

Nature A DSL built on top of Python which allows researchers to construct scalable scientific data-processing workflows

Host language Python

Application domain Scientific workflows

Purpose Formalisation of the solution, Implement the solution

Key advantages Performance, Portability, Easiness of configuration, Usability (Effectiveness/Efficiency/Satisfaction)

Paradigms Functional and Object-Oriented (built on top of Python)

Concrete syntax Textual

Existing tool Compilers, Tool suite

RQ3 Users’ role End-user

Required knowledge Languages (Python)

RQ4 Effectiveness Success evaluated, Explicit comparison with competing approaches and language proposal with respect to distinct set-
tings/context/configurations, Quantitative comparison performed, They provided four applications constructed using Weaver and evaluated
its effectiveness in the context of scripting scientific workflows for distributed systems, Metrics (Lines of code, Time), Productivity gains
brought (Learnability, Easier to use - Qualitative), Products’ performance gains brought (Computation efficiency, scalability - Quantitative and
Evolvability/Maintainability - Qualitative)
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Appendix B. Survey Form

Questionnaire-Paper-CK.pdf

Survey 
 
This survey is carried out within the scope of the article in preparation ”​Programming​ ​Languages for Data-Intensive 
HPC Applications: a Systematic Mapping Study​”, initiated by ​Vasco Amaral​ (Univ. Nova de Lisboa) and 
co-authored by the 20 contributors to the SLR/SMS study during the last 4 years. 
 
For complementation and validation of the literature review results, we would like to compare with the honest 
estimations of ​experts​ in data-intensive high-performance computing (that is, ​you​). Please help us in collecting a 
sufficiently large and broad statistical basis for this validation by answering this survey form. 
 
It only takes 2-3 minutes. 
 
Please hand in the paper anonymously.  
Many thanks in advance! 
 
1. Were you involved in the SMS? 
       O Yes            O No  
 
2. How long have you been working in High-Performance Computing? 
      O Not at all      O < 2 years      O 2 to 5 years      O 5 to 10 years      O > 10 years 
 
3. In what areas of science or engineering have you worked?  
     (e.g., computer science, bioinformatics, material science, telecommunications …) 
 
     _____________________________________________________________________ 
 
4. Do your High-Performance Computing related activities consist primarily of  
       O  developing programming support tools, or           O  using existing programming tools? 
 
5. How do you rate your level of technical knowledge about languages/frameworks for HPC? 
       O Very Poor        O Poor        O Neutral        O Good         O Excellent 
 
6. Which programming languages do you ​use​ for High-Performance Computing? 
 
      ______________________________________________________________________________ 
 
7. What are, in your view, the key advantages of these languages (in relation to the alternatives you know)? (this may 
include language properties, performance, programmability, etc.) 
 
     _______________________________________________________________________ 
 
     _______________________________________________________________________ 
 
8. What actually made you use these languages?   (if not already covered in 8.)  
 
      _______________________________________________________________________ 
 
9. Which other programming frameworks (e.g., library-based) and tools do you ​use​ for HPC? 
 
       _______________________________________________________________________ 
 
       _______________________________________________________________________ 
 
10. Which other HPC programming languages / frameworks / tools do you know about (but do not use)? 
 
       _______________________________________________________________________ 
 
       _______________________________________________________________________  
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[21] Lugowski, A., Kamil, S., Buluç, A., Williams, S., Duriakova, E., Oliker, L., Fox, A., Gilbert, J.R., 2015. Parallel processing of filtered queries in attributed
semantic graphs. Journal of Parallel and Distributed Computing 79, 115–131. doi:https://doi.org/10.1016/j.jpdc.2014.08.010.

[22] Maheshwari, K., Jung, E.S., Meng, J., Morozov, V., Vishwanath, V., Kettimuthu, R., 2016. Workflow performance improvement using model-based scheduling
over multiple clusters and clouds. Future Generation Computer Systems 54, 206–218. doi:https://doi.org/10.1016/j.future.2015.03.017.

[23] Mateos, C., Zunino, A., Campo, M., 2010. An approach for non-intrusively adding malleable fork/join parallelism into ordinary javabean compliant applica-
tions. Computer Languages, Systems & Structures 36, 288–315. doi:https://doi.org/10.1016/j.cl.2009.12.003.

[24] Mateos, C., Zunino, A., Hirsch, M., Fernández, M., Campo, M., 2011. A software tool for semi-automatic gridification of resource-intensive java bytecodes and
its application to ray tracing and sequence alignment. Advances in Engineering Software 42, 172–186. doi:https://doi.org/10.1016/j.advengsoft.
2011.02.003.

[25] McCormick, P., Inman, J., Ahrens, J., Mohd-Yusof, J., Roth, G., Cummins, S., 2007. Scout: a data-parallel programming language for graphics processors.
Parallel Computing 33, 648–662. doi:https://doi.org/10.1016/j.parco.2007.09.001.

[26] Meade, A., Deeptimahanti, D.K., Buckley, J., Collins, J., 2017. An empirical study of data decomposition for software parallelization. Journal of Systems and
Software 125, 401–416. doi:https://doi.org/10.1016/j.jss.2016.02.002.

[27] Mencagli, G., Torquati, M., Lucattini, F., Cuomo, S., Aldinucci, M., 2017. Harnessing sliding-window execution semantics for parallel stream processing.
Journal of Parallel and Distributed Computing doi:http://dx.doi.org/10.1016/j.jpdc.2017.10.021.

[28] Misale, C., Drocco, M., Tremblay, G., Martinelli, A.R., Aldinucci, M., 2018. Pico: High-performance data analytics pipelines in modern c++. Future
Generation Computer Systems 87, 392–403. doi:https://doi.org/10.1016/j.future.2018.05.030.

[29] Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.J., 2012. The thelma project: A thermal lattice boltzmann solver for the gpu. Computers & Fluids 54,
118–126. doi:https://doi.org/10.1016/j.compfluid.2011.10.011.

[30] Sengupta, D., Song, S.L., Agarwal, K., Schwan, K., 2015. Graphreduce: processing large-scale graphs on accelerator-based systems, in: High Perfor-
mance Computing, Networking, Storage and Analysis, 2015 SC-International Conference for, IEEE. pp. 1–12. doi:https://doi.org/10.1145/2807591.
2807655.

[31] Turek, W., Stypka, J., Krzywicki, D., Anielski, P., Pietak, K., Byrski, A., Kisiel-Dorohinicki, M., 2016. Highly scalable erlang framework for agent-based
metaheuristic computing. Journal of Computational Science 17, 234–248. doi:https://doi.org/10.1016/j.jocs.2016.03.003.

15

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
http://dx.doi.org/https://doi.org/10.1016/j.softx.2015.10.004
http://dx.doi.org/https://doi.org/10.1016/j.conengprac.2012.10.001
http://dx.doi.org/https://doi.org/10.1016/j.conengprac.2012.10.001
http://dx.doi.org/https://doi.org/10.1002/cpe.1871
http://dx.doi.org/https://doi.org/10.1016/j.scico.2015.04.007
http://dx.doi.org/https://doi.org/10.1016/j.future.2016.01.001
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2012.12.001
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2012.12.001
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.parco.2014.07.004
http://dx.doi.org/https://doi.org/10.1016/j.parco.2014.07.004
http://dx.doi.org/https://doi.org/10.1016/S0167-8191(02)00095-9
http://dx.doi.org/https://doi.org/10.1145/2063384.2063396
http://dx.doi.org/https://doi.org/10.1145/1863482.1863487
http://dx.doi.org/https://doi.org/10.1016/j.future.2013.12.023
http://dx.doi.org/https://doi.org/10.1016/j.future.2003.09.003
http://dx.doi.org/https://doi.org/10.1016/j.artint.2016.03.002
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2015.03.021
http://dx.doi.org/https://doi.org/10.1016/j.future.2010.11.027
http://dx.doi.org/https://doi.org/10.1016/j.sysarc.2015.10.003
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.09.169
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.09.009
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.08.010
http://dx.doi.org/https://doi.org/10.1016/j.future.2015.03.017
http://dx.doi.org/https://doi.org/10.1016/j.cl.2009.12.003
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.02.003
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.02.003
http://dx.doi.org/https://doi.org/10.1016/j.parco.2007.09.001
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.02.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2017.10.021
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.05.030
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2011.10.011
http://dx.doi.org/https://doi.org/10.1145/2807591.2807655
http://dx.doi.org/https://doi.org/10.1145/2807591.2807655
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2016.03.003


[32] Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I., 2011. Swift: A language for distributed parallel scripting. Parallel Computing 37,
633–652. doi:https://doi.org/10.1016/j.parco.2011.05.005.

16

http://dx.doi.org/https://doi.org/10.1016/j.parco.2011.05.005

	Languages used for Data-Intensive HPC Applications
	Survey Form
	Articles selected in the Study

