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ON THE CALORIC THEORY OE HEAT. 133 

XIV. The Caloric Theory of Heat and Carnot’s Principle.* B y  
H. L. CALLENDAR, M.A., LL.D., F.R.X., Protessor of 

Physics at the Imperial College of Science and Techmloyy, 
x. w. 

“ Difficile est proprie cummunia dicere.” 

1. Iiztroductory.-It is the time-honoured privilege of a 
President on these occasions, in place of providing new and 
original material for discussion, t o  indulge in the retrospect or 
review of some branch of physical science in which he may be 
pairticularly interested. I propose t o  take advantage of this 
presidential privilege by submitting for your approval some 
reflections on the foundations of the science of heat. So much 
has been written, and still continues to be written, on this 
engrossing subject from the purely theoretical standpoint, that 
1 should not venture to abuse your patience by choosing so 
hackneyed a theme if I did not feel that, by spending the best 
part of my life in the practical teaching and experimental 
investigation of the science, I had earned the right t o  an ex- 
pression of opinion. I feel sure that, however, you may dis- 
agree with my way of putting things, you will at  least believe 
that it is the outcome of practical experience, and represents 
the point of view of a serious experimentalist. The subject 
chosen is so large and the time at  my disposal so limited that 
I must be content with the merest outline of a suggestion, and 
must leave you to fill in the details yourselves. It is impossible 
to  cover the whole ground, or to  refer to a tithe of the ideas or 
theories which have been from time t o  time proposed for 
developing the fundamental principles of the science. If I 
should appear to have omitted many considerations of impor- 
tance I trust you will give me the benefit of the doubt, and 
believe that the omission is due merely to exigencies of 
space or time over which even a physicist has but a limited 
control. 

The caloric theory of heat is now so long forgotten that we 
rarely hear it mentioned, except as an e-xample of p r i m e d  
ignorance; but it was not really quite so illogical ta8 it is 

* Presidential Address, February 10,1911. 
VOL. XXJLI. 3.1 
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generally represented to be. The science of heat might have 
been developed along the lines of the caloric theory nearly, if 
not quite, as well as on the lines of the dynamic theory. Some 
most important and fundamental ideas, which are obscured iii 
the early stages of the present method of exposition, would, in 
fact, have been brought into greater prominence and more 
widely appreciated, and a clearer view of the whole subject 
might thus have been obtained. 

The original conception of caloric as a subtle imponderable 
fluid, capable of flowing from one body to another, of expand- 
ing bodies, and of producing rise of temperature or change of 
state, was, in the main, merely a picturesque analogy, invented, 
like the electric or magnetic fluids, with the object of giving tlic 
mind a tangible something t o  reason about, a measurable 
entity remaining constant in various transformations or ex- 
changes. The fluid terminology remains a convenient method 
of expression even if the thing measured has not all the pro- 
perties of a material fluid. 

The first serious difficulties which the theory encountered 
were in explaining the apparent generation of heat by friction 
or compression. It might have been boldly assumed, as 
Cavendish and others maintained, that  heat was generated by 
friction in the same kind of way as electricity ; but a more 
generally acceptable explanation at the time appeared to  be that 
some of the latent heat was ground or squeezed out of the bodies 
concerned and became sensible. The abraded or compressed 
matter, according to this view, was not capable of containing 
so much heat as the original stuff, or its “ capacity for heat ” 
was diminished. As there were no means of measuring the 
total heat content of a body, the ‘‘ thermal capacity ” was 
generally regarded as being proportional t o  the quantity of 
heat required t o  raise the temperature one degree, in which 
sense the phrase is still employed. The possibility of this 
explanation of the production of heat by friction was negatived 
at an early date by the experiments of Rumford and Davy. 
Rumford (“ Phil. Trans.,” 1798) in one of his experiments 
using a boring machine with a blunt tool, succeeded in raising 
26.5 pounds of cold water to  the boiling point by means of 
friction in 2tj hours with the production of only 4,145 grains of 
metallic powder. He then showed that the metallic powder 
required the same quantity of heat t o  raise its temperature 
1 deg. as an equal weight of the original metal, or that  its 
‘‘ capacity for heat ” in this sense was unaltered. He argued 
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that  so small a quantity of powder could not possibly account 
for all the heat generated, and that the supply of heat appeared 
to be inexhaustible. Heat could not, therefore, be a material 
substance, but must be something of the nature of motion, as 
Newton and Bacon had surmised. The argument was not 
quite conclusive, because he was unable to  show that the pow- 
der really contained the same total amount of heat as the solid 
metal. But the experiments must have satisfied every reason- 
able philosopher of the extreme improbability of the explana- 
tion then generally accepted. Davy’s experiment (described 
in an  essay “ On Heat, Light and Combinations of Light,” 
1799), in which he melted two blocks of ice by rubbing them 
together, was more conclusive, since as he remarks “ it is a 
well-known fact that  the capacity of water for heat is greater 
than that of ice, and ice must have an absolute quantity of 
heat imparted to it before it can be converted into water. 
Friction consequently does not diminish the capacities of 
bodies for heat.” In  stigmatising the “ last eleven words ” as 
“ a lame and impotent conclusion,” Lord Kelvin (Ency. Brit., 
‘ $  Heat,” 1882) inadvertently does Davy an injustice, because 
Davy evidently uses the phrase ‘( capacity for heat ” in both 
senses, as was common at the time. In a later passage of the 
same essay he defines capacity for heat as the total thermal 
content of the body, and employs the unfamiliar phrase 
‘‘ capability of temperature ” to  denote the heat required to 
raise the temperature. 1 deg. 

Although it was clear from these and similar experiments 
that caloric was actually generated by friction and could not be 
regarded as a material fluid in the ordinary sense, insomuch as 
it did not in all cases obey the law of the conservation of matter, 
then recently established, the idea of heat as ‘ I  a mode of 
motion ” was at that time too vague t o  afford a satisfactory 
substitute for the fluid theory. Davy speaks of heat as 

repulsive motion,” and distinguishes it from light, which is 
“ projective motion,” and is capable of forming compounds 
with ordinary matter. Thus oxygen gas is not a simple sub- 
stance, but a compound, termed by Davy ‘‘ phosoxygen,” of 
light and oxygen. A theory of this kind could not be usefully 
applied until it was shown how the motion corresponding to  
heat should be measured (whether by its momentum or vis 
v i m ,  or otherwise), how much motion was required to  generate 
a given quantity of heat, and whether the ratio of equivalence 
between heat and motion suitably measured was in all cases 

“ 

M 2  
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invariable. These questions were, in fact, so difficult to settle 
that we can hardly wonder that it was 50 years before a satis- 
factory answer was obtained. 

2. Thermal Properties of Gases. 

Light was first thrown on the subject by investigations 
bearing on the thermal properties of gases. The laws of 
expansion of gases and the elementary properties of vapours 
were already familiar about this time from the researches 
of Dalton, Gay Lussac and others; but the data regarding 
the specific heats of gases were very meagre and conflicting. 
Dalton had found a rise of 50'F. produced by compressing 
air suddenly t o  half its volume. This was less than a third 
of the true rise of temperature, but in any case the result 
could not be interpreted in terms of quantity of heat generated 
without a knowledge of the specific heat. 

The first reliable results for the specific heats were obtained 
shortly afterwards by Delaroche and BQrard ( r r  Ann. Chim.," 
1813). Their constant pressure method was a great advance on 
all previous work, and gave the mean specific heats referred to 
water between 15OC. and 100°C. They found that equal 
volumes of the permanent gases H,, N,, 0, and CO at atmo- 
spheric pressure had nearly the same thermal capacities as air, 
the specific heat of which they found to  be 0-267 calorie per 
gram at a pressure of 740". of mercury. The compound 
condensable gases, CO,, N,O and C,H,, were correctly found to 
have larger thermal capacities per u t  volume than air. They 
were unable to state whether the specific heats increased or 
diminished with temperature, but from an experiment with air 
at  1,OOO mm. pressure, which gave the value 0.245 calorie per 
gramme, they concluded that the specific heats diminished 
with diminution of volume. The experiments of Regnault 40 
years later showed that this observation was incorrect, but it 
appeared at the time t o  lend support to the view that the rise of 
temperature observed 011 suddenly compressing a gas was due 
to the diminution of its specific heat, a hypothesis otherwise 
unsupported by experimental evidence. 

It was evident that the elasticity, or resistance of a gas to 
compression, would be greater in a rapid or adiabatic com- 
pression, on account of the rise of temperature, than in a slow 
compression at  constant temperature. Laplace was the first 
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to see in this fact the probable explanation of the long-standing 
discrepancy between the observed velocity of sound and that 
calculated by Newton on the basis of Boyle’s law of isothermal 
compression. According to Boyle’s law, a reduction of 1 per 
cent. in volume at constant temperature raised the pressure of 
air by 1 per cent. The observed value of the velocity of sound 
required that in a rapid compression of 1 per cent. the pressure 
should be increased 1.41 per cent. This result is more accu- 
rately expressed by the statement that the ratio of the adia- 
batic to the isothermal elasticity of air is 1.41. At a later date 
(“ Ann. Chim.,” 1816) Laplace stated that he had succeeded 
in proving that the ratio of the adiabatic to the isothermal 
elasticity of a substance was the same as the ratio of the specific 
heat a t  constant pressure to the specific heat at constant 
volume. This important result follows directly from the 
definitions of the two elasticities and the two specific heats, 
and is independent of any view as to the nature of heat or tem- 
perature. But it appeared at  the time to afford the strongest 
support to the caloric theory, because it showed that the 
specific heat was actually greater when the volume was allowed 
to increase than when the volume was kept constant, and 
because no explanation was forthcoming on the kinetic theory. 
The specific heats measured by Delaroche and B6rard were 
those at constant atmospheric pressure. All attempts to  
measure the specific heats at  constant volume had signally 
failed on account of experimental diiliculties, but their values 
could be calculated from the known value of the ratio thus 
deduced by Laplace. 

A few years later Clement and Dbormes (“ Journ. de Phys.,” 
1819) succeeded in verifying the value of the ratio deduced from 
the velocity of sound by directly measuring the changes of 
pressure produced by adiabatic and isothermal compression. 
They found the value 1.354, which was lower than the true 
value 1.41, because the compression in their experiments was 
not strictly adiabatic. Gay Lussac and Welter (“ Ann. 
Chim. ,” 1822) repeated the experiment with slight improve- 
ments, employing expansion instead of compression, and found 
a rather better approximation, namely, 1.375. They found 
the ratio practically constant for a range of pressure from 144 
t o  1,460 mm., and for a range of temperature from -2OOC. to 
+40°C. Assuming on this evidence the constancy of the ratio 
of the specific heats of air, Laplace (“ CEuv~es,’’ V., p. 143) 
showed that the specific heat per unit volume a t  a pressure p 
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should vary as pl'y, and the specific heat per unit mass as p ' / y  -I, 
according to the caloric theory, where y is the ratio of the 
specific heats. This result happened to agree precisely with the 
values found by Delaroche and BQrard for air at 740 and 1,000 
mm., and appeared to  be an additional confirmation of the 
caloric theory. The same propositions were demonstrated by 
Poisson ( I c  Ann. Chim.," 1823, XXIII.,  p. 337), who also gave 
the familiar relation, pvY=constant, between *the pressure and 
volume of a gas in adiabatic expansion or compression. The 
last equation is evidently correct, but the reasoning with regard 
t o  the variation of the specific heat with pressure is somewhat 
obscure, and the result given does not appear to  follow neces- 
sarily from the caloric theory. 

3. Carruot's Reflexions on the Motive Power of Heat. 
The greatest step in advance was made about this time by 

Carnot in his famous essay, entitled " Reflexions on the Motive 
Power of Heat," Paris, 1824. Proposals had frequently been 
made to employ other agents, such as air, alcohol or ether, in 
place of steam in a heat engine, with a view to securing higher 
efficiency or a greater quantity of motive power for a given 
consumption of fuel. Carnot proposed to  find the answer to 
the questions, how the efficiency was limited, and whether 
other agents were preferable to steam. In considering this 
problem he first points out that  motive power (which he 
measures in kilogrammetres, and employs as equivalent to  the 
modern term " work ") cannot be said to be produced from 
heat alone, unless nothing but heat, or its equivalent fuel, is 
supplied. All parts of the engine, including the working sub- 
stance or agent, must be a t  the end of the process in precisely 
the same state as a t  the beginning. He here assumes a funda- 
mental axiom, which had always been taken for granted, bnt 
not so precisely and explicitly stated by previous writers. 

Carnot's Axiom for a Cyclical Process. 

" When a body has undergone any changes and after a cer- 
tain number of transformations is brought back identically to 
its original state, considered relatively t o  density, temperature 
and mode of aggregation, it must contain the same quantity 
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of heat as it contained originally.”* The ideal engine for theo- 
retical purposes must, therefore, be supposed to work in a com- 
plete cycle of operations in which everything is restored to its 
initial state, except that a certain quantity of heat has been 
supplied to and utilised by the engine. This does not seriously 
limit the application of the theory, because, although prac- 
tical engines do not always use the same identical mass of 
working substance for each stroke, they necessarily repeat a 
regular cycle of operations continuously, and it is generally 
possible to devise an equivalent theoretical cycle in which the 
working substance is restored after each stroke to  its initial 
state. Carnot proceeds to show that motive power cannot be 
obtained from heat by alternate expansion and contraction of 
the working substance, without postulating the existence of 
two bodies at different temperatures t o  serve as boiler 
and condenser, or source and sink of heat respectively ; and 
conversely that, wherever a difference of temperature exists, 
it  is possible t o  utilise it for the production of motive power. 
He thus deduces the fundamental rule for obtaining the best 
results. 

* Carnot goes on  to say : ‘‘ I n  other words, the quantities of heat absorbed 
or disengaged in  its diverse transformations are exactly compensated. This 
fact has  never been doubted ; it has been first assumed without reflection, 
and then verified by calorimetric experiments. To deny it would be to  up. 
set the whole theory of heat, for which i t  serves as a basis. For the rest, one 
may say in passing, the principal foundations on which the theory of heat 
rests, require the most attentive examination. Many experimental facts 
appear almost inexplicable in the present state of this theory.” Clausius 
“ Pogg. Ann.,” 1850 ; “ Phil. Mag.,” IV., vol. II., p. 2, 1851) misquotes this 
passage most ingeniously. He fails to notice that  the essential point assumed 
by Carnot in  any cyclical process is t h a t  the quantity of heat remaining in  
the body is the same when i t  has been brought back identically t o  the same 
state. He makes Carnot “ expressly state that no heat is lost in  the process, 
tha t  the quantity (transmitted from the fireplace to the condenser) remains 
unchanged.” Clausius makes this “ the fact which has never been doubted,” 
&c. I n  reality, Carnot, in describing his cycle, does not make the assump- 
tion which Clausiris here attributes to him, because it is not a necessary part 
of the reasoning. Carnot does not, even in the paraphrase of his axiom, say 
that  the quantities of heat absorbed or  disengaged i n  its diverse tmnsforma- 
tions are equal, but merely that  they are esnctly Compensated, SO far as the 
body itself is concerned. Whether they are equal or not depends on the way 
i n  which a quantity of heat is measured. The essential point of the reason- 
ing i n  Carnot’s description of his cycle is that the result is independent of any 
assumptions with regard t o  the way in which temperature or heat are 
measured, provided that  the quantity of heat remaining in the body is the 
s8me when it has been brought back to its original state after any trans- 
formations. The special word ‘‘ compensated,” which Carnot employs in  
place of “ equal ” in paraphrasing his axiom, would appear to  imply that he 
did not consider the quantities of heat absorbelf and disengaged necessarily 
equal, and that  this waA one of the points which required the most attentive 
exnminntion.” 
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Carnot’s Criterion of Thermal Reversibility. 
“ In  order to  realise the maximum effect, it is necessary that, 

in the process employed, there should not be any direct 
interchange of heat between bodies at sensibly different tem- 
peratures.” Direct transference of heat between bodies a t  
different temperatures would be equivalent to wasting a differ- 
ence of temperature which might have been utilised for the pro- 
duction of motive power. This rule excludes all the well- 
recognised thermal sources of waste of power, which practical 
engineers had already been most successful in reducing. The 
ideal engine was also assumed to be free from mechanical 
losses such as friction. Under these conditions there is equili- 
brium, both mechanical and thermal, at every stage of the pro- 
cess, so that each operation is reversible, and may be supposed 
to be performed in either direction a t  will. 

4. Carnot’s Ideal Cycle. 
Carnot first gives a rough illustration of an imperfect cycle, 

using steam in much the same way as in an ordinary steam 
engine, but supposing most of the usual losses absent. After 
expansion t o  condenser pressure, the steam is supposed t o  be 
completely condensed, and then returned as cold water t o  the 
hot boiler. He points out that the last stage does not confoim 
t o  his rule for maximum effect, because, although the water is 
restored to its initial state, there is direct passage of heat from a 
hot body to a cold body in the last process. Having thus 
established the general notions of a perfect cycle, and of rever- 
sibility as the criterion of perfection, he proceeds to  give a more 
exact illustration, employing a gas as the working substance. 
In  this demonstration he assumes only the well-es tablished 
experimental facts (1) that a gas may be heated or cooled by 
rapid compression or expansion, and (2) that, if compressed or 
expanded slowly in contact with conducting bodies, it  may be 
made to  evolve or absorb heat at constant temperature. 
Carnot’s cycle itself is so familiar that  it is scarcely necessary 
to  describe it in detail. It is much to  be regretted, however, 
that  it is not always given as nearly as possible in Carnot’s own 
words. His description is so nearly perfect that  it could hardly 
be improved. Details which may appear superfluous a t  a first 
perusal are seen, on more careful study, to  be exactly in the 
right place. Unnecessary assumptions have been introduced 
by others in describing the cycle, and have led t o  mistakes 
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which Oarnot carefully avoided. For instance, Clapeyron, in 
describing the cycle, directs one to compress the gas at  the 
lower temperature in contact with the cold body B until the 
heat disengaged is equal to that which has been absorbed at the 
higher temperature. This operation would be very difficult to 
perform, and involves the unnecessary assumption that the gas 
a t  this point contains the same quantity of heat as it contained 
a t  the beginning of the first stage, so that when the body B is 
removed, the gas will be restored t o  its original temperature by 
adiabatic compression to its original volume. It was chiefly 
for this reason that Clausius, who was acquainted with Cmmot’s 
work chiefly through the medium of Clapeyron’s summary, so 
completely misinterpreted it, and substituted another proof. 
The same mistake undoubtedly induced Lord Kelvin to state 
(“ Phil. Mag.,” IV., 1852) that “ Carnot’s original demonstra- 
tion utterly fails,” and was the cause of the “ corrections” 
attributed to James Thomson and Clerk Maxwell respectively. 
In  reality, Carnot’s original description is independent of any 
assumption as to the nature of heat, and requires no correction. 

After completing the description of the cycle, and showing 
its exact reversibility, Carnot proceeds to say : “ The impos- 
sibility of producing by the agency of heat alone a quantity of 
motive power greater than that which we have obtained in our 
first series of operations, is now easy to  prove. It is demon- 
strated by reasoning exactly similar t o  that which we have 
already given. The reasoning will have in this case a greater 
degree of exactitude ; the air of which we made use to  develop 
the motive power is brought back at the end of each cycle of 
operations precisely to  its initial state, whereas this was not 
quite exactly the case for the vapour of water, as we have 
already remarked. ’’ Carnot considered the proof too obvious 
(as indeed it is) to be worth repeating. Unfortunately his 
original demonstration, referring to an imperfect cycle given 
merely comine un a p e r p ,  as an introduction to the method, is 
not so exactly worded that exception cannot be taken to it. I 
will, therefore, repeat the proof in a slightly more definite and 
exact form, as Carnot probably intended it to run. “ If it were 
possible to produce from a given quantity of heat supplied a 
greater quantity of motive power than that obtained from a 
reversible engine, it would suffice to divert a portion of this 
power to  return to  the source by means of a reversible engine 
the quantity of heat taken from it. We should thus obtain a t  
each repetition of the cycle a balance of motive power without 
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taking any heat from the source-that is to say, without any 
consumption of fuel.” The extreme improbability of such a 
result is a sufficient reductio ad absurdum to  satisfy any reason- 
able intelligence. Whether the condenser is heated or cooled 
in the process is immaterial for practical purposes. The con- 
denser might be the ocean or the whole earth. We should thus 
obtain the practical equivalent of a perpetual motion, inter- 
preted by Carnot as the continuous creation of motive power. 
If the conservation of energy is assumed, it is true that the 
condenser would be cooled. But it hardly seems necessary t o  
invoke the law of the conservation of energy, and to make a 
final appeal to  axioms, such as those of Kelvin* or Clausius, 
which are far less self-evident. The conservation of energy as 
applied t o  heat is itself an experimental law, and bhe final 
appeal must be to  experiment in any case. 

5.  Carnot’s Principle. 
Carnot stated his principle as follows :- 
“ The motive power of heat is independent of the agents set 

at work to  realise it ; its quantity is fixed solely by the tem- 
peratures of the bodies between which in the limit the t’ransfer 
of heat is effected.” 

He adds to  this statement : “ It is necessary to understand 
here that each of the methods of developing motive power 
attains the perfection of which it is susceptible. This condi- 
tion will be fulfilled if, as we have remarked above, there is not 
produced in the body any change of temperature which is not 
due to  a change of volume, or, what is the same thing otherwise 
expressed, if there is never contact between bodies at  sensibly 
different temperatures.” He also explains that the principle 
applies equally t o  different substances and t o  different states of 
the same substance, provided that the temperature‘ limits are 
the same for the agents compared in any case. 

Carnot’s principle may be stated in a great variety of different 
ways, which are more or less equivalent, but it seems best to  
adhere as closely as possible to Carnot’s own words, the mean- 

* Carnot’s proof does not assume either t h a t  heat is measured as energy 
or that energy is conserved. If both these p3ints are assumed, his axiom 
that  it is impossible to  make a heat engine work without taking heat from 
the source, or without consumption of fuel, is equivalent to Kelvin’s axiom 
that  motive power cannot be obtained by cooling the condenser. One 
may be deduced from the other; but Carnot’s axiom is the most direct 
result of experience with heat engines, involves the fewest assumptions, nnd 
nppenrs to be the most appropriate for the required formal proof. 
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ing of which is sufficiently clear and exact for all practical pur- 
poses. Whatever form of words is adopted, it will always be 
necessary to define the terms employed, and to  explain how the 
principle is t o  be applied. On this understanding many 
different modes of expression are equally valid and satisfac- 
tory but many paraphrases of Carnot’s principle have been 
given from time to time which appear t o  be distinctly objec- 
tionable as obscuring the real points at issue: Clausius, for 
instance (“ Pogg. Ann.,” 1850, Vol. LXXIX., p. 369) quotes 
Carnot’s principle as follows : “ The performance of work is 
equivalent to a transference of heat from a hot body to a cold 
body without the quantity of heat being thereby diminished.”’ 
This method of statement omits both the essential points, (1)  
that  the efficiency is independent of the working substance, 
a id  (2) that it  is a function solely of the temperature limits. 
It also introduces can unnecessary assumption with regard to 
the manner in which a quantity of heat is measured, which is 
not an  essential part of Carnot’s reasoning. The principle 
itself is independent of the manner in which either heat or 
temperature is measured. Provided that the methods of 
measuring heat and temperature are consistent, and are the 
same for all substances compared, the only effect of altering 
the temperature scale or the definition of the heat unit, is to 
alter the form of the function representing the efficiency. 

6.  Carnot’s Applications of his Principle. 
Carnot endeavoured to apply his principle to the greatest 

possible variety of cases, and to subject it to the most complete 
experimental verification, so far as the data available at that 
time would permit. He succeeded in establishing for the first 
time several important results, which have in some cases been 
overlooked or attributed to  others. He appears to have 
worked out most of these results analytically in the fist in- 
stance as indicated by his footnotes, and to have subsequently 
translated the formulae into words in the text for the benefit 
of his non-mathematical readers. He expressed his principle 
analytically in the following simple form. If W is the quantity 
of work or motive power obtained in a reversible cycle from a 
quantity of heat, &,* communicated to  the working substance 
at a temperature, t ,  C ,  the condenser, being assumed for con- 
venience at  OOC., we may write 

W /Q=F(t), . . . . . . . (1) 
*It is not here assumed that heat is necessarily measured as energy. 
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where F(t)  is some function of the temperature limits, depend- 
ing on the way in which temperature and heat are measured 
but independent of the properties of the working substance. 
Owing to the limited state of knowledge with regard to the 
physical properties of bodies at  that time, he was unable to 
apply the principle generally in this form. He points out that 
a great simplification is introduced in the application of the 
principle by considering a cycle of infinitesimal range, at, but 
finite heat absorption Q, at a temperature t .  He thus obtains 
by differentiation the corresponding expression, 

dW/dt  = QF’( t ) ,  . . , . . . . ( 2 )  
where F’(t) is the derived function of F(t) ,  and is generally 
known as Carnot’s function. This function evidently denotes 
the quantity of work obtainable per degree fall in a Carnot 
cycle per unit of heat supplied at the temperature t ; and is the 
same for all substances at the same temperature. 

Carnot, in the first instance, by applying the principle in this 
form to the discussion of the thermal properties of gases, 
endeavoured to complete the solution of the problem from the 
theoretical side by showing how the value of his function F ( t )  
or F’(t) might be expected to vary with temperature, consis- 
tently with the ascertained laws of gases, and with various 
simple assumptions made with regard to  properties which had 
not been experimentally determined. 

7. Properties of Gases deduced by Carnot from his Principle. 

Carnot’s discussion will be followed as closely as possible 
with a few slight changes in the notation t o  render it more 
familiar. The work done in isothermal expansion at  a tem- 
perature, T (Carnot writes t+267) by a gas obeying the law 
pw=RT, in expanding from vo to v is RT log, (w/v,). The work 
done in a cycle of range dT per 1 deg. fall is evidently dW/dT 
=R log,(u/u,). By Carnot’s principle this is equal to QF’(t), 
where Q is the corresponding quantity of heat absorbed. We 
thus obtain the expression for the heat absorbed by a gas in 
isothermal expansion, 

which must be the same for all gases at the same temperature 
for the same ratio of expansion w/o,, provided that they obey 
the law pv=RT, and that corresponding quantities of the 
different gases are taken (equal volumes at the same standard 

Q=R log, (u/v,)/F’(t), . . . . . (3) 
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temperature and pressure)]so that the constant R is the same 
for all. In other words, the heat absorbed by a gas in iso- 
thermal expansion is propartional t o  the whole work done, and 
bears t o  it the ratio l/TF’(t). This result is independent of the 
way in which temperature and heat are measured, provided 
that the gases obey the same law of isothermal expansion and 
give the same scale of temperature. 

Since, when a gas absorbs a quantity of heat equal to the 
difference of the specific heats at constant pressure and volume, 
the work done in isothermal expansion is p / T  or R, Carnot 
deduces from the above general result that the difference of the 
specific heats (for equal volumes measured under the same 
conditions) must be the same-namely, R/TF’(t)-for different 
gases at the same temperature, and must also be independent 
of the pressure. He draws up a table showing the values of the 
specific heats at constant volume deduced from the results of 
Delaroche and BBrard at constant pressure. On this he re- 
marks that the ratio of the specific heats must be different for 
different gases, whereas it had generally been assumed to be 
the same. The elevation of temperature produced by a sudden 
compression must therefore be different for different gases, 
and he gives a table showing the results. 

Since, according to the experiments of Gay Lussac and Welter 
the ratio of the specific heats of air is independent of the pres- 
sure and temperature, and according to his own theory the 
diflerence of the specific heats must also be independent of the 
pressure at  the same temperature, it follows that the specific 
heats themselves must be independent of the pressure. Carnot 
points out that this is inconsistent with the result of Delaroche 
and BBrard previously cited for the specific heat of air at 
1,oOO mm. pressure-namely, 0.245-which is less than the 
value 0.267 found at 740 mm, The discrepancy must be due 
to errors of experiment. The variation of the specific heats 
with pressure was doubtful, because it rested on a single difli- 
cult experiment, and the range of pressure was too restricted 
for a satisfactory conclusion t o  be drawn. 

8. Carnot’s Application of the Caluric Theory. 
The results so far obtained by Carnot in his investigations 

with regard t o  the specific heats of gases, were independent of 
the caloric theory and remain equally true on the kinetic 
theory, although they have frequently beai credited to other 
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writers.* Because in some cases he employed the language 
and reasoning of the caloric theory, it does not follow, as most 
writers have hastily assumed, that his whole argument breaks 
down. In  attempting to unravel the relations of the specific 
heats, Carnot was compelled to  employ some theory or assump- 
tion as to the nature of heat. He naturally adopted the caloric 
theory, because no other theory was available at that time, and 
the experimental data were too inadequate t o  permit of any 
other method of treatment. 

The most fundamental postulate peculiar to the caloric 
theory is that  the quantity of caloric required to  be added to a 
body to transform it from any state, defined, we may suppose, 
by temperature to and specific volume w,, to any other given 
state, defined by temperature t and specific volume w, 
is the same, in what ever way the change is effected. Carnot 
applies this assumption to the problem in hand in the following 
manner. Suppose that unit mass of gas is first heated a t  con- 
stant volume w, up to the temperature t ,  absorbing a quantity 
of caloric U,, and is then expanded a t  constant temperature t ,  
absorbing a quantity of caloric R log, (w/v,),/F’(t), as proved in 
the last section. Ne& suppose that the gas is first expanded 
from w, t o  w a t  constant temperature to, absorbing a quantity 

* Dulong (” Ann. de Chim.,” XLI., p. 156,1829), adopting a method due t o  
Chladni, compared the velocities of sound in different gases by observing the 
pitch of a note given by the  same tube when filled with the gases in  question. 
H e  thus obtained the ratios of the specific heats. For 02, Hz and CO the 
ratios were the  same as for air. B u t  for CO2, N20 and C,H, the  ratios were 
much smaller than for air. On comparing his results with the specific heats 
for the same gases found by Delaroche and BBrard, Dulong observed that  the 
changes of temperature for the same compression were in  the inverse ratio of 
the specific heats at  constant volume. He thus deduced the important con- 
cluaion, agreeing with that  obtained theoretically by Carnot five years earlier, 
t h a t  “ equal volumes of all gases under the same conditions evolve on com- 
pression the same absolute quantity of heat.” Carnot’s result is more 
general and significant, and  it is clear that  he deserves some credit for the 
prediction. 

Joule in 1845 showed by experiment that  the ratio (Carnot’sTF’(t)) of the 
work done t o  the heat evolved in compressing a gas was nearly, if not quite, 
the same as the ratio J of work spent in heating water by friction to the heat 
evolved. The mechanical equivalent J must, therefore, be equal to Carnot’s 
T F ( t ) ,  if heat is measured as energy. Since Joule’s experiments were all 
performed practically at one temperature, they do not afiord direct evidence 
as  to the variation of F’(t) with temperature, unless we assume that  a quan- 
tity of heat is measured as a quantity of energy which cannot vary with k m -  
perature. Admitting this, F’(t) must be equal to J/T, as  Joule himself sug- 
gested in  a letter to Kelvin in  1848. Carnot is entitled to  some credit for 
having predicted t h a t  the ratio must be constant a t  any one temperature, or 
must be a function of the temperature only. Mayer i n  1842 assumed the 
equivalence on the basis of the old principle “ cuzcm q u a t  e@ttcnc,” whieli 
could hardly be regarded as scientific demonstration. 
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of caloric given by R log,(w/w,)/F’(t,), and is then heated at con- 
stant volume w from t ,  to t ,  absorbing a quantity of caloric U. 
The total quantity of caloric Q required in either case must be 
the same on the caloric theory. Whence we have, 

From this equation it is immediately obvious that, if the 
specific capacity for caloric at constant volume is independent 
of the volume, since U=U,, F’(t) must be equal to F’(t,) ; or 
Carnot’s function must be independent of the temperature, if 
the latter is measured on the gas scale and if the heat is mea- 
sured as caloric.* We also observe, as Carnot points out, that 
it  is not necessary for the specific capacity for caloric to be a 
function of the volume in order to explain the rise of tempera- 
ture produced by compressing a gas. But this assumption 
had so frequently been made by Laplace and others that  it had 
come to be regarded as an essential part of the explanation of 
the phenomenon on the caloric theory. Carnot also investi- 
gates the general law of the variation of specific heat with pres- 
sure, admitting the result of Delaroche and B6rard as correct. 
But since we know now, from the observations of Regnault, 
first published in 1852, that the result of Ilelaroche and Bdrard 
was wrong, and that the specific heat of air is practically inde- 
pendent of the pressure, i t  is clear that  Carnot deserves some 
credit for having given the correct solution of the problem on 
this assumption. 

Putting F’(t) =constant =A, Carnot obtains for the work 

* The corresponding expression for F’(t)  on the mechanical theory may be 
obtained by an exactly similar process. If a quantity of heat is measured as 
cnergy, the difference of the quantities of heat absorbed and rejected in  the 
cycle represented by equation (4)-namely, U,-U+R log; (w/vo)[l/F’(t) 
-l/F‘(t,J-must be equal to the external work done in the cycle-namely, 
R log, (w/v,)(T-T,)-divided by the mechanical equivalent J. If the 
specific heat a t  constant volume is independent of the pressure U=U,, and 
F’(t) must be.eyua1 to J/T. Substituting this value of F’(t) in  Carnot’s ex- 
pression (3) for the heat absorbed by a gas i n  isothermal expansion, we see 
that  i t  is equivalent t o  the work done provided the gas obeys Boyle’s law, 
nnd that  its specific heat a t  constant volume is independent of the pressure. 
Clnusius at a later date reversed this procedure. He began by assuming the 
equivalence of the heat absorbed to the work done by a gas i n  isothermal 
expansion, and deduced that  the specific heat was independent of the pres- 
sure. The assump 
tion of the equivalence of heat and work in a non-cyclical process, thus made 
by Nayer and Clausius, was, in effect,a violation of Carnot’s fundamental 
axiom, tilid could not be justified theoretically. Carnot’s assumption is also 
preferable from the experimental standpoint, because it proposes a more 
direct and simple test-namely, that  the specific heat should be the same at 
cliff ereut pressures. 

But  Carnot’s method appears more logical and direct. 
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done per unit of caloricLsupplied at a temperature t"C. in a 
finite cycle of range t to OOC., the simple expression F(t)=At. 
Expressing the same result in terms of temperature T on the gas 
scale, we obtain for the work, W, due to a quantity, Q, of caloric 
supplied at  a temperature, T, in a Carnot cycle of range T t o  T,, 
the expression 

W=AQ (T-To). . . . . . , ( 5 )  
This expression is less general than equation (l), because it 

assumes that a quantity of heat is measured as caloric, and 
that temperature is measured on the scale of a gas obeying 
Boyle's law and possessing the property that its specific heat 
a t  constant volume is independent of the pressure. Admitting 
these assumptions the solution is obviously correct. The quan- 
tity of caloric, Q, supplied at  the temperature, T, is necessarily 
the same as the quantity rejected at the temperature To, because 
the quantity of caloric in the working substance must remain 
constant, when no heat is supplied, in reversible expansion or 
compression such as is postulated by Carnot in his cycle. We 
observe that, if heat is measured as caloric, it is quite correct 
to state that " the production of work from heat is due, not to 
an actual consumption of caloric, but t o  the transport of caloric 
from a higher to a lower temperature." Carnot's analogy of 
the water-wheel is thus exactly justified. Caloric, like water, 
is not itself motive power, but is capable of performing work 
under suitable conditions in virtue of its tendency to flow down 
a temperature gradient. The quantity of motive power pro- 
duced is directly proportional to the quantity of caloric and to 
the fall of temperature. 

9. The Notive Power of a Quantity of Caloric. 
The solution thus found by Carnot, and expressed in equa- 

tion (5 ) ,  was not merely the correct final solution of the problem 
on the caloric theory, it is also immediately obvious that it is 
perfectly consistent with the kinetic theory of heat, and sup- 
plies the master key to  the relations between heat and motive 
power. Caloric may be said to possess motive power in virtue 
of its elevation of temperature, just as water possesses motive 
power in virtue of its available head or pressure. In the case of 
caloric there is a definite limit set by the absolute zero of tem- 
perature to the quantity of motive power obtainable by a 
cyclical process from a quantity of caloric supplied at any 
temperature. Putting T,=O, the absolute zero, the maximum 
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quantity obtainable from a perfect gas as working substance, 
and therefore from any other substance whatever, is evidently 
AQT, which may be regarded as the absolute work-value of 
a quantity of caloric, Q, supplied at a temperature, T, on the 
absolute scale. The quantity of motive power developed, if 
the fall available is T-To, is AQ(T-To). The limit of effi- 
ciency for such a fall, or the ratio of the motive power obtained 
to  the total motive power of the caloric supplied, is (T-T,)/T. 
The motive power of the caloric rejected at To is AQT,. The 
sum of the quantities of motive power utilised and rejected is 
equal to the total motive power of the quantity supplied at T.* 

Carnot’s solution is not merely consistent with the mechanical 
theory; it directly states the principle of the conservation of 
motive power, and gives all the results which follow from that 
theory so far as they relate t o  reversible processes. He could 
not fairly have been expected to  realise this at the time and to  
express his results in terms of the mechanical theory, because 
that theory had not been put in a definite form. His results 
are not necessarily incorrect because they were expressed in 
terms of the caloric theory. The numerical values which he 
calculated in various ways for the motive power of caloric were 
correct so far as the experimental data available a t  that time 
permitted. They deserve in reality to be regarded as the first 
calculations of the mechanical equivalent of heat, although 
they were expressed in a manner which renders them at first 
sight unfamiliar t o  modern readers. 

10. Canzot’s Numerical Verification of his Principle. 
The investigation of the specific heats of gases having failed, 

on account of discordant experimental data, to lead t o  a om- 
clusive result with regard t o  the variation of F’(t) with tem- 

* This result, which is equivalent t o  the fundamental postulate of the 
mechanical theory, may readily be extended to a reversible cycle of any form. 
The given cycle may be supposed to  be divided by a family of adiabatic or 
equicaloric curves into a number of elementary Carnot cycles of different 
ranges. For each of these elementary cycles, the quantity of caloric ab- 
sorbed is equal to that rejected, and the difference of the energies of the 
caloric supplied and rejected is equal to  the external work done. Taking the 
sum of the elementary cycles, the total quantity of caloric absorbed must be 
equal to  that rejected in any cycle, which is the fundamental postulate of the 
caloric theory ; and the difference of the quantities of heat energy absorbed 
and rejected in the cycle must be equal to the external work done, which is 
the fundamental postulate of the mechanical theory. The two postulates, 
so far from being opposed to  each other, are mutually eqnivalent, and both 
are implied in Carnot’s solution. 

VOL. XXIII. N 
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perature, Carnot next devotes his attention to the numerical 
calculation of the values of F'(t) a t  different temperatures from 
the properties of different gases and vapours, so far as the 
scanty material at his disposal permitted. His f i s t  calculation 
from the properties of air at  O O C .  appears a t  first sight to  be 
unnecessarily long and involved, owing t o  his elaborate en- 
deavour to avoid what he calls algebraic language ; but he 
probably deduced the answer directly in the first instance from 
his expresison for the heat absorbed in isothermal expansion, 
applied to the difference of the specific heats-namely, R/TF'(t). 
Employing his data, the value of F'(t), or the work done in a 
cycle per degree fall per unit of heat supplied, comes out 1.395 
kilogrammetres per kilocalorie per degree fall at  0°C. This 
method of calculation, based on the work done in a cycle, does 
not, like that of Mayer or Clausius, involve the assumption that 
the whole work done in isothermal expansion is equivalent to the 
heat supplied, which is true only for a perfect gas. Carnot's 
method applies to any gas or vapour, however imperfect, and 
would give the same result exactly for all substances at the 
same temperature if the experimental data were correct. The 
absolute equivalent of the kilocalorie is obtained, as explained 
in the last section, by multiplying this result by the absolute 
temperature corresponding to OolC. on the scale of a perfect gas- 
namely, 273-which gives 380 ktlogrammetres for the mecha- 
nical equivalent of the kilocalorie. The discrepancy from the 
true value, 427 kilogrammetres per kilocalorie, is due merely to 
errors in the experimental data. 

For steam a t  100°Ci., taking Dalton's value of (dpldt) ,  the 
rate of increase of pressure with temperature-namely, 26 mm. 
of mercury, or 0.36 metre of water-and taking the specific 
volume of steam at 100"O. as 1,700 litres per kilogramme, 
Carnot finds the motive power d W / d t  per degree fall in a cycle 
employing 1 kg. of steam, t o  be 1,700~0.36=611 kilogram- 
metres. The quantity of heat supplied is the latent heat of 
vaporisation per kilogramme a t  100°C., which he takes as 
550 kilocalories. The work in kilogrammetres per kilocalorie 
per degree fall, or the value of F'(t) is 

F'(t) = 61 1 /550= 1.1 12 at  100°C. 
Multiplying this result by the absolute temperature 373O, 

we obtain 415 kilogrammetres as the absolute equivalent of the 
kilocalorie, which is a better approximation, because the data 
for steam were more accurate than those for air. 
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The method of calculation employed for steam is equivalent 
to the formula 

(v--~l) (dp/dt)=LF’(t), . . . . , (6) 
where (v-w) is the change of volume on vaporisation, and L 
the latent heat. This formula is generally known as Clapey- 
ron’s, but Carnot appears to be entitled to some credit for it, 
because it is simply the direct expression of his principle as 
applied to change of state, and because he was the first to 
employ it for numerical calculation, although he does not 
happen to  give the formula itself in algebraic form in his foot- 
notes. 

Applying the same calculation to the vapour of alcohol at  its 
boiling-point, 78*7”C., Carnot found the value F(t)=1.230 kilo- 
grammetre per kilocalorie per degree fall. This would not 
necessarily agree with the value found from steam at 100°C., 
because the temperature was different. Assuming, in accord- 
ance with Watt’s law, that the total heat of steam reckoned 
from 0°C. was constant and equal to 650 kilocalories per kilo- 
gramme, the latent heat at 78.7”C. would be 571 kilocalories. 
Taking the appropriate value of (dpldt)  from Dalton’s tables, 
Carnot thus finds F’(t)=1.212 from steam at 78.7”C., which 
agrees very fairly with the result deduced from alcohol at the 
same temperature. A similar calculation for steam at O O C . ,  
taking the latent heat as 650 from Watt’s law, gave the value 
F’(t)=1.290, which differs materially from the value 1.395 
found for air a t  the same temperature ; but the data for steam 
were here so uncertain, that no stress could be laid on the dis- 
crepancy. The value F ( t )  = 1.290 gives 352 kilogrammetres 
for the kilocalorie. The discrepancy in the values of the kilo- 
calorie deduced in this way from steam at different tempera- 
tures is not to  be wondered at, because Lord Kelvin (“ Trans.” 
R.S. Edn., XIV., 1849) in re-calculating by a modification of 
Carnot’s method the mechanical equivalent J from Regnault’s 
greatly improved data for steam, found values ranging from 
1,357 ft.-pounds per pound degree C. at 0°C. to 1,578 ft.-pounds 
at  230”a. Joule had then by direct experiment found values 
ranging from 1,368 to 1,476 ft.-pounds at 10°C. to 16OC. Lord 
Kelvin was not satisfied that the value of J was the same at 
different temperatures. It required a bold speculator like 
Clausius to argue that there could be no variation with tem- 
perature. 

Carnot laments that data were lacking, especially the values 
N 2  
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of (dp ld t ) ,  to  enable him to calculate F’(t) for solids and liquids, 
and particularly for the case of fusion of ice. If he had been in 
possession of Lord Kelvin’s value-namely, 130 atmospheres- 
of the pressufe required to lower the freezing point of water 
l”C.,  he would have found F’(t)=1.53, or 418 kilogrammetres 
as the equivalent of the kilocalorie a t  0°C. With the data at  
his disposal, one can hardly wonder that he was baffled ab 
every turn in his attempts to verify his theory. 

Reviewing the numerical data for F’(t), which varied from 
1.112 kilogrammetres per kilocalorie per degree fall a t  100°C. to 
1.290 and 1.395 at O”C., Carnot was led to  the conclusion that 
F’(t) probably diminished with rise of temperature on the gas 
scale, but that  the numerical data were not sufficiently ex& 
t o  determine the law of variation with temperature. Unfor- 
tunately the apparent diminution of F’(t) with rise of tempera- 
ture was most readily explained by supposing that the specific 
heat of a gas was nbt independent of the volume, but increased 
with increase of volume, as Delaroche and BQrard had found. 
We see immediately from Carnot’s equation (4) that  if v is 
greater than vo, and U greater than U,,, then F’(t) must be less 
than P’(t0).  In  other words, F’(t) must diminish with rise of 
temperature. It happened that the mistake made by Dela- 
roche and BQrard was very nearly of the right order of magni- 
tude to  account for the observed rate of diminutionof F’(t) 
with rise of temperature. Carnot was thus dissuaded from 
pursuing further the simple and obvious solution-namely, 
tha t  F’(t) was constant-which he had founded on the assump- 
tion that the specific heats were independent of the pressure. 

If Carnot had not been misled by this fundamental error in 
the work of Delaroche and BQrard, and if his numerical data 
had been a little more accurate, he could not have failed to 
notice that the quantity of caloric in a kilocalorie varied in- 
versely as the absolute temperature, or that its equivalent 
motive power was the same a t  all temperatures. In  other 
words, that  the kilocalorie was a unit of motive power, and not 
a unit of caloric. According to  his data, neither the work 
obtainable per degree fall, nor the total work obtainable from a 
kilocalorie, was the same a t  different temperatures. Both 
appeared to vary to  about the same extent, but in opposite 
directions. The point which naturally did not occur to  Carnot, 
and which the experimental data were too uncertain to sug- 
gest, was the extremely fundamental point (which was also 
missed by subsequent writers in dealing with the caloric theory) 



THEORY OF HEAT AND CARNOT’S PRINCIPLE. 173 

that  a quantity of caloric as measured by his equation, did not 
remain constant under the conditions of an ordinary calori- 
metric experiment, when heat was allowed to flow directly 
from a hot body to  a cold body. 

11. Measurement of Caloric. 
According to Carnot’s solution, W =A&( T-To), the natural 

measure of a quantity of caloric is the work done per degree fall 
in a Carnot cycle. 

The constant A in this relation may be reduced to  unity by a 
suitable choice of units. The absolute unit of caloric is that 
quantity which is capable of doing unit work per degree fall in a 
Carnot cycle. If the absolute unit of work is taken as the joule 
or watt-second, the absolute unit of caloric may appropriately 
be styled the CARNOT. 

The CARNOT is that  quantity of caloric which is capable of 
producing one joule of work in a Carnot cycle per 1°C. fall on 
the scale of a perfect gas. 

The number of carnots of caloric required to vaporise one 
gramme of water at 100OC. under standard conditions is readily 
calculated from Carnot’s data. Since the work done per 
gramme vaporised per degree fall is 0.611 kilogrammetres, or 
nearly 6 joules, the caloric of vaporisation is nearly 6 carnots. 
The work done per degree fall per kilocalorie of heat supplied 
at 100°C. is 1.112 kilogrammetres, or nearly 11 joules. The 
number of carnots of caloric in a kilocalorie a t  100°C. is nearly 
11. Taking 130 atmospheres C.G.S. as the pressure required 
to lower the melting point of ice 1”C., and 0.092 cubic cm. as the 
diminution of volume per gramme on melting, the work obtain- 
able from 1 gramme of ice a t  O O C .  in a Carnot cycle per degree 
fall is 1 3 0 ~ 0 ~ 0 9 2 / 1 0 = 1 ~ 2  joules. The caloric of fusion is, 
therefore, 1.2 carnots. The mechanical equivalent of Q 
carnots supplied at T Abs. is QT joules. These values are cal- 
culated from the work which might be done in a reversible 
cycle, and are quite independent of calorimetric data. The 
caloric absorbed by 1 gramme molecule of a perfect gas 
(R=8.3 joules per 1 deg.) in expanding a t  constant tempera- 
ture from w, to  w, is given by Carnot’s equation (3) as 
Q ~ 8 . 3  log, (u/w,,) carnots, and is independent of the tempera- 
ture. The difference of the specific capacities for caloric at 
constant pressure and volume a t  a temperature, T, is 8.3/T 
carnots per degree or the absolute work value of the difference 
is 8.3 joules per degree. 
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12. Equivalence of the Caloric and Kinetic Theories. 
The exact correspondence between the solution obtained by 

Carnot on the caloric theory with that subsequently obtained 
by Clausius, Rankine and Kelvin on the kinetic theory, is most 
easily appreciated if we compare the steps by which each solu- 
tion was obtained. For this purpose we may follow the expo- 
sition of the kinetic theory as given by Clausius, as it is the 
most direct, and corresponds most nearly with the method of 
Carnot. Clausius starts with assuming Carnot’s relation in the 
form dW/dt=QF’(t), which is equally true on either theory, 
whether heat is measured as energy or as caloric. The diver- 
gence begins with the assumption that heat is measured either 
as a quantity of caloric (denoted by &)*, or as a quantity of 
energy (denoted by 4 ) .  Adopting the gas scale of temperature, 
these assumptions determine the form of the function F’(t). 

Cariiot shows, as already explained, that if the specific heat 
of a gas at  constant volume is independent of the pressure, F’(t) 
must be constant, =A, on the caloric theory, if temperature is 
measured on the gas scale. This gives dW/dt=AQ, or] 
W=AQ(t-to) in a finite cycle. The measure of caloric is work 
per degree fall, and the work equivalent of caloric is found by 
multiplying the caloric by the absolute temperature and by a 
Constant A. It follows that the work done by a perfect gas in 
isothermal expansion is the equivalent, AQT, of the caloric sup- 
plied, and that the difference of the specific capacities for caloric 
R/AT, is the same for all gases if equal volumes are taken. 

He begins by 
assuming with Mayer as highly probable on general grounds 
that the work done by a gas in isothermal expansion is the 
equivalent Jq of the heat absorbed, which gives immediately, 
from Carnot’s equation, F’(t)=J/T when heat is measured as a 
quantity of energy, This had been previously suggested by 
Holtamann (1844, but Clausius, having the advantage of 
Joule’s experiments, was able to show that the numerical 
values of J /T were all reasonably consistent with Carnot’s 
values of F’(t) for the calorimetric unit, Applying this assump- 
tion t o  gases, it follows that the specific heat at  constant 
volume must be independent of the pressure, and that the 
difference of the specific heats must be equal to  R/J. Clausius 

* To indicate that a quantity of heat is measured differently in the two sets 
of formulo,capitals will be used for quantities depending on the caloric 
measure of heat, end small letters for the oonesponding symbols in energy 
measure, 

Clausius proceeds in the opposite direction. 
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ignores the evidence of Delaroche and BQrard on the variation 
of the specific heat with pressure, which gave Carnot so much 
trouble, but adopts that of Gay Lussac and Welter on the con- 
stancy of the ratio, which he (erroneously) states “ cannot be 
reconciled with the theory of Carnot as heretofore treated.” 
Assuming the constancy of the specific heats, he deduces 
Poisson’s equation for the adiabatics. He finally obtains for 
the heat absorbed by a gas in isothermal expansion from v, to 
v the expression q=RT log, (v/vo)/J, which is the same as the 
assumption with which he started, and is equivalent t o  Carnot’s 
expression (3). The results thus obtained were not new, ex- 
cept in the manner of expression. They were given to show 
that the kinetic theory was consistent with the then ascer- 
tained properties of gases. 

We have already seen that Carnot’s principle takes the form 
given in equation (6) when applied to vapours. Substituting 
F’(t)=A, this becomes (u--w)(dp/dt)=AL, where L is the latent 
caloric. On the kinetic theory we must substitute I?’(t)=J/T, 
and the equation becomes (v-w) (dp/dt)=JZ/T, where I is the 
latent heat energy, and is equal to the latent caloric L multi- 
plied by T, if the units are chosen so that the constants A and J 
are the same. Assuming J constant, Clausius employs this 
equation (in the reverse way to  Lord Kelvin) to calculate the 
deviations of steam from the ideal state, which he regards as 
being the explanation of the variation of J with temperature 
deduced by Lord Kelvin from Regnault’s experiments. This 
calculation was well meant, but indecisive, because, as we now 
know, Regnault’s formula for the latent heat was erroneous. 

Joule, by his experiments on gases, had arrived at the con- 
clusion that in the performance of a heat engine the heat 
energy converted into work was not given back to  the conden- 
ser. This is true of heat measured as energy, and appeared at  
f i s t  not only to be a conclusive disproof of the caloric theory, 
but also to be quite irreconcilable with the proof of Carnot’s 
principle as given by Clapeyron. Clausius showed that this 
result was not necessarily inconsistent with Carnot’s principle 
itself ; but that, on the kinetic theory, in any cyclical process, 
the heat returned to the condenser must be less than that 
taken from the source by a quantity equivalent to the external 
work done. Applying this principle t o  an inhitesimal cycle 
with steam as the working substance, he deduced a new and 
unexpected result, discovered about the same time by Rankine. 
If saturated steam is compressed, heat must be abstracted 
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from it to reduce it to the state of saturation a t  the higher pres- 
sure and temperature; in other words, the specific heat of 
steam maintained in the state of saturation is negative. This 
result is so good an illustration of the difference between the 
kinetic and caloric theories that it deserves fuller explanation. 

If s‘, s” are the saturation specific heats of water and steam 
respectively, I and Z+dZ the latent heats of vaporisation at 
neighbouring temperatures T, and T+dT, the heat supplied in 
raising unit mass of water from T to  T+dT and vaporising it 
a t  TfdT will be s’dT+Z+dZ. The heat abstracted in cooling 
the saturated steam to T, and condensing it at T, will be 
s”dT+Z. The difference of the quantities of heat absorbed and 
abstracted-namely, (s’-.s”)dT+dZ-must, according to the 
kinetic theory, be equivalent to the work done in the cycle 
(v-w) (dp/dt)dT. But this work by the previous equation (6) 
deduced from Carnot’s principle, is itself equivalent to a quan- 
tity of heat (Z/T)dT. Dividing the equation by dT, so as to  
obtain the difference in the quantities of heat absorbed and 
abstracted per degree range of the cycle, we obtain the well- 
known equation of Clausius, 

Knowing the approximate vlaues of all the quantities except 
 at 10O0C.-namely, s’=l, dl/dT=-O.70,1 /T=540/373=1.45 
calories per degree-we obtain with Clausius, s”=s’+dZ/dT 
-Z/T=-1.15, or the specific heat of saturated steam 100°C. is 
negative and numerically greater than that of water. Clausius 
remarks that this is inconsistent with the caloric theory, which 
gives the formula s“=s’+dZ/dT, without the negative term ZIT, 
and would make the specific heat positive and equal to  3-0-30, 
according to Regnault’s data. In reality there is no incon- 
sistency. It is merely a question of the difference between 
the caloric measure and the energy measure of heat. 
t t  On the caloric theory the corresponding equation is deduced 
as follows by Carnot’s method. If S’, S” are the specific capa- 
cities for caloric of water and steam in the state of saturation, 
and if L and L+dL are the values of the latent caloric of 
vaporisation at  T and T+dT, the caloric absorbed in the cycle 
-namely, S’dT+L+dL-must be equal to the caloric ab- 
stracted-namely, S d T f  L-we thus obtain 

S”=S’+dL/dT, . . , . . (8) 
which agrees ir, form with the equation ascribed by Clausius 
to  the caloric theory, but the quantities involved are quan- 

S’--S‘‘+~Z/~T=Z/T. . . . . . . (7) 
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titie3 of caloric, and not quantities of energy. If we imagine 
s’, S” and E ,  expressed in joules, and S’, S” and L in carnots, the 
latter are reduced to joules by multiplying them by T. Muliti- 
plying through the last equation by T, and writing S”T=s”, 
S’T=s’ and L=Z/T, we obtain 

which is identical with the equation deduced by Clausius from 
the kinetic theory. 
&We deduce from the above example, or from many others 
which might be given, that the fundamental postulate of the 
caloric theory, which ‘Carnot employed in deducing his solution 
W=AQ(T-Ti), and which Clausius was regarded as having 
conclusively disproved-namely, that the caloric absorbed is 
equal to  that abstracted in any reversible cycle-so far from 
being opposed to  the kinetic theory, is mathematically equiva- 
lent to  Joule’s proposition that the heat energy absorbed ex- 
ceeds that abstracted by the equivalent of the work done. 

It is surprising that Clausius in his first Paper did not give 
the complete solution for a Carnot cycle of finite range, which 
follows immediately from his assumption F’(t)= J/T on the 
kinetic theory. Putting H=Jq for the heat absorbed at T, 
measured in work units, and observing that dH, the difference 
between the quantities of heat absorbed and abstracted, is 
equal to dW the work done in the cycle, Carnot’s equation 
dW/dt=pF’(t) reduces t o  the form, dH/dt=H/T. From 
which it immediately folIows that the ratio H/T of the heat H 
taken in at T to  the temperature T in a finite cycle of range T to 
To, is the same as the ratio H,/To of the heat rejected H, to the 
temperature To at which it is rejected. Since H-H,=W, the 
work done in the cycle, the solution may be written in the 
familiar form, 

which is precisely equivalent to Carnot’s solution, Q=Qo 

The solution in something approaching very nearly to this 
form appears first to have been given by Rankine, without 
proof, in a footnote to his Paper on the Mechanical Theory of 
Heat (“ Phil. Mag.,” Ser. IV., Vol. II., p. 65, 1851). He gives 
“ the maximum value of the fraction of the whole heat con- 
verted into expansive power ” as (T--To),’(T-k), “ where k is a 
constant, the same for all substances.’’ which is apparently in- 
teiided to  take account of the differeiice between the absolute 

s”=s’+Td(l/T)/dT=s‘+dl/dT-l/T, , . . (9) 

H/T=H,/T,=W/(T-To), . . - (10) 

=W/(T-T,). 
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zero of the gas thermometer, and the ‘‘ absolute zero of heat.” 
Lord Kelvin (“ Phil. Trans.,” 1854) subsequently proceeded by 
the inverse process. Instead of adopting the scale of a perfect 
gas, as assumed by Carnot, he defined absolute temperature, 
by the above relations (lo), in such a way as to  agree with the 
perfect gas scale ; and proceeded to investigate, with Joule’s 
assistance, the deviations of actual gases from the scale so 
defined. 

13. R9appsaranse of Caloric in the Mechanical Theory. 
Since Carnot’s equation, dW/dt=QF’(t), was adopted with- 

out material modification into the mechanical theory, so that 
QF’(t) remained simply a quantity of Carnot’s caloric (though 
Q was measured in energy units and F’(t) received the appro- 
priate value J/T required to reduce energy units to caloric), it 
was inevitable that caloric should make its reappearance sooner 
or later in the mechanical theory. It first appears, disguised as 
a triple integral, in Kelvin’s solution ( ‘ I  Phil. Mag. ,” IV., p. 305, 
1852) of the problem of finding the work obtainable from an 
unequally heated body. The solution (as corrected later) is 
equivalent to the statement that the total quantity of caloric 
remains constant when the equalisation of temperature is 
effected by means of reversible engines, Caloric reappears 
next as the “ thermodynamic function ” of Rankine, and as the 
“ equivalence-value of a transformation ” of Clausius (“ Pogg. 
Ann.,” XCIII., p. 497, 1854). Pinally, in 1865, when its 
importance was more fully recognised, Clausius (“ Pogg. Ann.,” 
CXXV., p. 390) gave it the name of ‘‘ entropy,” and defined it 
as the integral of dQ/T.  This debition depends on the calori- 
metric or energy measure of heat, and obscures the fact that 
the caloric measure of heat follows directly from Carnot’s prin- 
ciple, and may be made independent of the calorimetric 
measure. No one at  that time appears to have appreciated 
Carnot’s solution, or to have realised that entropy was merely 
caloric under another name, In justice to Carnot, it should be 
called caloric, and should be defined directly by means of his 
equation W=AQ(T-To). This method of procedure appears 
t o  be justifiable both logically and historically, and leads t o  a 
more practical and definite conception of entropy or caloric as 
the true measure of a quantity of heat as opposed to a quantity 
of thermal energy. The mathematha1 definition of entropy, 
as the integral of dQ/T under certain restrictions, is unintelli- 
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gible to  the average student, for whom the conception of 
entropy possesses an artificial atmosphere of unreality. The 
conception of caloric defined by Carnot’s equation would be 
more readily assimilated, and might be introduced a t  a much 
earlier stage. The direct investigation of the properties of 
caloric thus defined would probably lead to ‘a more general and 
intimate appreciation of Oarnot’s principle itself and of many 
modern developments of thermodynamics which are practically 
beyond the comprehension of the majority of students under 
the present system. 

14. Caloric in Irreversible Processes. 
Carnot was the first to distinguish between reversible and 

irreversible processes in thermodynamics, and to lay down the 
simple and sufficient rules for the reversibility of a heat engine. 
(1)  Such an engine must work without friction, which involves 
direct waste of mechanical power, and had long been recog- 
nised as the non-conservative element in mechanical systems, 
(2) There must be no direct passage of heat from a hotter to  a 
colder body, which is the criterion of thermal reversibility. In  
order t o  complete the caloric theory of heat, it was necessary 
to find an answer t o  the questions : (1) What becomes of motive 
power spent in friction ? and (2) What happens to caloric when 
it passes directly from a body at a higher to a body a t  a lower 
temperature ? 
b. Rumford and Davy had proved beyond cavil that caloric 
was generated by friction. &mot (as we see from the notes 
published by his brother) had already, before his early death in 
1832, arrived at  the general theory of the equivalence of heat 
and motive power, and had projected a number of experiments 
in which the motive power consumed should be measured at the 
same time as the heat produced. From the purely theoretical 
side it would have been most natural to assume that the abso- 
lute motive power of the caloric generated was equal to the 
motive power consumed, as given by the equation W=AQT, 
for the maximum amount of motive power obtainable from a 
quantity Q of caloric at T, which with A for F’(t) is the same as 
Carnot’s expression for the heat evolved in compressing a per- 
fect gas. But 
Carnot, being aware of the conflicting nature of the experi- 
mental evidence, felt that further experimental verification was 
necessary, which was first afforded by Joule. 

We know now that this is the correct solution. 
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Carnot showed that the direct passage of heat from a hotter 
t o  a colder body was equivalent to wasting a difference of tem- 
perature which might have been utilised for the production of 
motive power. It was natural to ask what became of the 
motive power wasted. In  the analogous case of the waterfall, 
the answer is fairly obvious. If the water is allowed to fall 
freely, its motive power is expended in the production of vis viva 
equivalent to its fall, which is converted into heat by friction 
when its motion is arrested. Similarly, when a compressed gas 
is allowed to expand into a vacuum, the work which might 
have been obtained from it by reversible expansion in a cylin- 
der provided with a piston, is spent in producing vis viva of the 
issuing current of gas, which is finally converted into heat by 
friction, so that the quantity of caloric in the gas is increased, 
instead of remaining constant as in reversible adiabatic expan- 
sion. Carnot considers a case of this kind in a footnote. Gay 
Lussac and Welter had observed that if a small opening were 
made in a large reservoir of compressed air, and the bulb of a 
thermometer were presented to the issuing current, there was no 
sensible lowering of temperature observed, such as would have 
been produced in a similar reversible expansion. Carnot attri- 
butes this result partly to the development of caloric by friction 
against the sides of the orifice, and partly to the increase of 
pressure close to the thermometer bulb due to the impact. 

When a quantity of caloric, Q‘, supplied at a temperature, T‘, 
is allowed to fall directly by conduction to a temperature T”, 
without producing the equivalent motive power AQ’( T’-T”), 
which might have been obtained from the fall (TI-T”) by 
means of a reversible engine, it  is not so immediately obvious, 
owing to our ignorance of the mechanism of conduction, what 
becomes of the motive power wasted. The case is analogous 
t o  the fall of a quantity of electricity in a conductor, through 
a difference of potential in the conductor, in which case the 
caloric generated is equivalent to  the motive power wasted. 
On Weber’s hypothesis the carriers of heat and electricity 
in metals are the same, and the methods by which caloric 
is generated in either case must be closely related. It would 
be reasonable to  assume by analogy that a quantity of caloric, 
Q’(T’-T”)/T”, equivalent t o  the wasted motive power at  
the lower temperature, was generated in the fall by some 
process analogous t o  friction. Adding this to the original 
quantity Q’, we find the quantity Q” of caloric recovered 
at  the lower temperature T” equal to Q’T’IT”. In other 
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words, the quantity of caloric is increased by falling freely 
in such a way that its equivalent motive power A&’”” at 
the lower temperature is the same as that which iC originally 
possessed-namely, AQ’T’-at the higher temperature. This 
is precisely what we now assume on the analogy of material 
systems in applying the principle of the conservation of energy 
to heat. Carnot appears to have foreseen this result, and to  
have devised experiments for verifying it, but so far as I know 
it has not been explicitly verified, merely because it has not 
occurred to anyone to define caloric explicitly in terms of work 
per 1 deg. fall in a cycle, and to compare this measure directly 
with the calorimetric units. 

At the present time so many data exist for the verifica- 
tion of the increase of caloric in an irreversible process, 
that it  is unnecessary to  perform a special experiment. The 
inevitable result of such an experiment may be predicted 
by a simple calculation, such as the following. We have 
already seen that the caloric of vaporisation of steam at 
100°C., measured in terms of Carnot’s equation, is approxi- 
mately 6 carnots per gramme, and the caloric of fusion 
of ice a t  0°C. is 1.2 carnots per gramme. Arrange an 
experiment in which steam is condensed a t  100°C. on one 
side of a conducting partition, while ice is melted a t  0°C. on the 
other side, without allowing any heat to escape. Measure both 
the steam condensed and the ice melted in a given time. We 
know, as the result of innumerable calorimetric experiments of 
this kind, that for each gramme of steam condensed, 540/79.5 
grammes of ice approximately would be melted. Six carnots 
at  100°C. when allowed to  fall directly to O’C. by conduction, 
produce 540x 1.2/79.5=8.17 carnots a t  0°C. The quantity of 
caloric a t  OOC. is greater than that supplied a t  100°C. in the 
proportion of 8.17 to 6, which is nearly the same as the ratio 
373/273 of the absolute temperatures. The motive power of 
the caloric a t  100”C.-namely, 6x 373=2,238 joules-is the 
same as the motive power of the caloric found a t  0°C-namely 
817x 273=2,231 joules-within the limits of error of the data. 
Similarly in other cases, whenever available motive power is 
wasted “ in the useless re-establishment of the equilibrium of 
caloric,” an equivalent quantity of caloric is generated, so that 
the total motive power, including any useful work done, re- 
mains constant. In  a reversible cycle, when there is no waste 
and the efficiency is a maximum, the total quantity of caloric 
remains constant. The increase of caloric, if any, due to  
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friction or conduction, is a measure of the motive power 
wasted. 

Caloric is not conserved in the old sense that its total quan- 
t i ty  remains constant in any system of exchanges under all con- 
ditions. It remains constant only in the restricted sense, pro- 
vided that all the exchanges are reversible or take place under 
conditions of equilibrium. But since in any irreversibIe ex- 
changes the total quantity of caloric is always increased, the 
principle of the conservation of caloric can still be stated in the 
modified form that  “ the total quant,ity of caloric in a system 
cannot be diminished by any internal reactions or by the perfor- 
mance of work by or on the system, provided that no heat is 
allowed to  escape.” Applied in this form, with various modi- 
fications to suit special conditions, it has proved to  be one of the 
most fruitful principles of modern thermodynamics ; but i t  
might have been reached sooner, and more generally appre- 
ciated, if the caloric theory had not been so hastily abandoned. 

14. The Calorimetric Measure of Heat. 
The only defect of the caloric theory as developed by Carnot 

lay in the tacit assumption that the ordinary calorimetric units 
were units of caloric. This, no doubt, was one of the funda- 
mental points in the theory of heat, which, in Carnot’s opinion, 
“ required the most attentive examination.’’ He had himself 
supplied the key to  the d a c u l t y  in his criterion of thermal 
reversibility. But no experimental data were available to de- 
cide the point. The pioneers of the mechanical theory made 
the same tacit assumption when they took it for granted that a 
given quantity of work done in compressing a gas at any tem- 
perature would produce the same number of units of heat in a 
calorimeter. Granting that heat was measured as energy in a 
calorimeter, and that  energy was conserved, the required result 
followed ; but this was the very point which was to be proved. 
Even Joule’s experiments were not suflicient in themselves to 
decide the point, because they were all performed at nearly the 
same temperature, so that  it made no difference whether heat 
was measured as caloric or as energy. According to  Carnot’s 
equation (3), the ratio of the caloric evolved to the work done 
should be constant at any one temperature, and should vary 
comparatively slowly with the temperature. Lord Kelvin 
appears to have appreciated this point when he endeavoured 
to  calculate, by means of Regnault’s data for steam, the number 
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of foot-pounds of work required to generate 1 calorimetric 
unit of heat by compressing a gas at different temperatures. 
The number varied from 1,357 to 1,578 foot-pounds per pound- 
degree C., but this result was not conclusively against the 
mechanical theory, because, as Clausius showed, it admitted a 
different interpretation. The first experiments which were 
sufficiently definite and accurate to decide the point were those 
of Regnault (“Phil. Mag.,” V., p. 473, 1853), which showed 
that the specific heat of air, measured calorimetrically, was 
nearly independent of pressure and temperature over a wide 
range. . It follows from Carnot’s expression R/TI?’(t) for the 
difference of the specific heats, that if heat is measured calori- 
metrically, I?’(t) must be equal to  J/T as required by the 
mechanical theory, assuming the ratio of the specific heats to be 
constant. But if Carnot’s solution (deduced on the assump- 
tion that the specific heat of air was independent of the pressure) 
had not been overlooked, it would have been obvious that 
caloric itself was not energy, and that Regnault’s result was not 
inconsistent with the measure of heat as caloric, but only with 
the tacit assumption that the caloric measure was identical 
with the calorimetric measure. If this had been recognised at 
the time, it would have been quite unnecessary to recast and 
revolutionise the entire theory of heat. Evolution would have 
proceeded along safer lines with the retention of caloric, and the 
investigation of its properties, which are so important in all 
questions of equilibrium in physics. 

15. Caloric the True Measure of Heat Qwntay. 

Since a quantity of heat is measured most directly as a quan- 
tity of thermal energy in an ordinary calorimetric experiment, 
we have become so saturated with the idea that heat is energy 
and must be measured in units of energy, that we are apt to 
forget that  a quantity of heat is not completely specified by its 
energy equivalent. The absurdity would be a t  once apparent, 
to take an analogous case, if we were to measure a quantity of 
electricity always in kilowatt-hours. The equivalent energy 
determines the cost of production, and is for many purposes the 
appropriate and sufficient measure, but we should fare very 
badly in electrical theory without the separate units of quan- 
tity in ampere-hours and pressure in volts. In  electricity, the 
conditions of practical measurement have led us naturally to 
units of quantity defined in terms of electric and magnetic 
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forces, and the unit difference of potential follows as that 
difference through which unit quantity must fall in doing unit 
n-ork. In the science of heat Carnot’s equation provides us 
with a precisely analogous measure of heat quantity or caloric 
as distinct from a quantity of energy. The unit of caloric is 
that  which does unit work in falling reversibly through 1 deg. 
of temperature. The unit of caloric might be defined directly 
in terms of the expansion of a gas at constant temperature by 
the equation Q=R log, (V/W~,) ,  in which case the scale of tem- 
perature would follow. But since this method would be incon- 
venient for the practical measurement of caloric, we define the 
temperature scale first, as that of the perfect gas, and deduce 
the natural unit of heat quantity, which comes to the same 
thing. It is true that  we can solve most questions in heat in 
terms of energy and temperature, without explicit reference to 
caloric or its equivalent. We could similarly solve most elec- 
trical problems without mentioning amperes. But since 
caloric possesses the important propeity, essential to the natural 
measure of heat quantity, of remaining constant in reversible 
exchanges (which the energy measure of heat does not) all our 
equations and methods of reasoning with regard to  questions 
of equilibrium are greatly simplified and rendered more direct 
if we adopt caloric as the true measure of heat quantity,and 
regard it as possessing energy in virtue of its temperature. 
With all our preconceived notions of heat as a “ form of 
energy,” it is difficult now to  retrace our steps and express 
everything in terms of caloric. But, if Carnot’s solution had 
not been overlooked 60 years ago, it would have seemed equally 
absurd to regard a quantity of heat merely as a quantity of 
energy, and we should probably have been far ahead of our 
present position. 

16. The Material Nature of Caloric. 
The objection most commonly urged against the caloric 

theory from the earliest times has always been that it was 
absurd to suppose that anything which could be generated 
without limit coiild possibly be regarded even in thought as a 
material fluid. Some 20 years ago, the fluid theory of elec- 
tricity was regarded as being equally illogical and physically 
unsound, although it was generally retained on account of the 
many useful analogies which it suggested. A natural reaction, 
consequent on fresh discoveries, has caused the pendulum t o  
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swing far in the opposite direction. Electricity is now more 
material than ever, and is continually invading other branches 
of physics with materialistic notions. So long as a quantity 
of heat is regarded as being necessarily a quantity of energy, the 
fluid conception is of little or no use. It is true that a quantity 
of energy cannot be created or destroyed, but since it may be 
transformed into an equivalent quantity of any other kind of 
energy, it cannot be identified as remaining constant in any one 
state. It is true 
that caloric can be created without limit, just as we think and 
speak of electricity as being generated ; but it has the most 
important attribute that, when once generated, it can never, so 
far as we know, be destroyed. Moreover, caloric remains con- 
stant under precisely those limiting conditions of equilibrium 
which are most important for purposes of practical calculation. 
It is true that it may be dficult  to isolate a particular set of 
material particles and label them caloric. It is conceivable 
that caloric may not be material a t  all, but merely, as Boltz- 
mann puts it, “ the logarithm of the probability of a com- 
plexion.” But if this is really the case, it is all the more neces- 
sary for our sanity and progress to think and speak of it as a 
material fluid. Although this conception of caloric may ap- 
pear a t  first sight to run counter t o  some of our most cherished 
popular illusions with regard to heat, there could be no serious 
objection to adopting it as a convenient method of expression. 
The more shadowy the conception to be visualised, the greater 
the need of a definite material analogy. From this point of 
view the old picturesque phraseology of the material fluid, 
implied in Carnot’s waterfall, so far from being a valid objection, 
is one of the chief advantages of the caloric theory. 

This objection does not apply to caloric. 

17. Conclusion. 

The modes of thought and expression inherent in the caloric 
theory lead most naturally and inevitably to the conception 
of the conservation of caloric as the fundamental law peculiar 
to thermodynamics. To the mathematician, who loves to deal 
in abstract mysteries, the substitution of the crude idea of 
caloric for the esoteric conception of entropy may doubtless 
prove repellent ; but to the experimentalist, who prefers t o  
think in concrete realities, the change of view point cannot fail 
to be suggestive. So long as entropy was merely a mathematical 
abstraction it was unnecessary to attach any definite meaning 
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t o  the absolute quantity of entropy in a body, and no one 
objected to  its being infinite when reckoned from zero pressure, 
temperature, or volume. But if we regard caloric as the 
natural measure of heat quantity, and push the conception to 
its logical conclusion, the absolute quantity of caloric in a finite 
body must be finite, and must vanish a t  the absolute zero of 
temperature. The specific heats in energy measure, instead 
of remaining constant or tending to a finite limit, as generally 
assumed, must tend to vanish as the zero is approached. The 
ideal gas of constant specific heat is an obvious objection to 
this rule, but the real gas avoids the difficulty by condensing 
in good time. This direct corollary of the caloric theory, so 
far from being inconsistent with experiment, is daily receiving 
confirmation from recent researches. It would be impossible, 
in a sketch like the present, to follow the caloric theory into 
all its possible developments, but enough has been said to 
show that the conception of caloric, as employed by Carnot, 
was not so misleading or erroneous as is generally supposed. 

ABSTRACT. 
The caloric theory of heat as developed by Carnot in his famous 

“ Reflexions on the Motive Power of Heat ” (Paris, 1824) leads imme- 
diately to the correct solution of the relations between heat and motive 
power (energy or work) in all reversible processes, and appears to be in 
some respects preferable to  the mechanical theory as a method of 
expression, because it emphasises more clearly the distinction first 
clearly stated by Carnot, between reversible and irreversible transfor- 
mations, and because it directly provides the natural measure of a 
quantity of heat as distinct from a quantity of thermal energy. 

Carnot first introduced the method of the cyclical process in dis- 
cussing the action of a heat engine, and showed that, in the ideal case, 
if there were no direct transference of heat between bodies a t  different 
temperatures, the transformations of heat and motive power in such a 
cycle were reversible. Assuming that it was impossible to  imagine a 
heat engine capable of producing motive power perpetually without 
taking any heat from the boiler, he concluded that the quantity of 
motive power, W, produced from a given quantity of heat, Q,by means of 
a reversible engine, working between given temperature limits in a cyclical 
process, was the maximum obtainable ; or that the efficiency must be 
independent of the agents employed, and must be c?r function of the 
temperature limits alone. He expressed this by the equation W/Q= 
F ( t ) ,  between finite limits 0’ and t’C., or by the equivalent equation 
dW/dt=QF’(t) for a cycle of infinitesimal range, dt, at a temperature, t ,  
where F’(t) (generally known as Carnot’s function) is the derived 
fun.’;ion of F ( t ) ,  and must be the same for all substances at  the samc 
temperature. 

Applying the equation in this form to a gas obeying the law pv= RT, 
he showed that the heat absorbed in isothermal expansion from WO to w 
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was given by the expression Q= R log,(v/wo)/E”(t), and that the differ- 
ence of the specific heats a t  constant pressure and volume, given by the 
expression S,- Se== R/TF’(t), must be independent of the pressure, 
and the same for equal volumes of all gases. These results were new, 
but mere confirmed experimentally by Dulong five years later. Carnot 
showed, further, that  if the ratio S,/S, was constant (as found by Gay 
Lussac and Welter, and assumed by Laplace and Poisson), both S, 
and SC must be independent of the pressure. 

The results so far obtained by Carnot, including the description of 
his reversible cycle and the deduction of his fundamental principle, 
were independent of any assumption as to the nature of heat. Apply- 
ing the assumption of the caloric theory, that the quantity of caloric 
required to change the state of a substance from (vo, to) to (v, t )  was the 
same by any reversible process, Carnot deduced that, if Sowas inde- 
pendent of the pressure, the function B’(t) must be constant,=A. 
This assumes that heat is measured as caloric, and that temperature is 
measured on the scale of a gas, obeying the law pv=RT, and having 
S, independent of the pressure, which is equivalent to the modern 
definition of a perfect gas. Putting F’(t)=A,  he obtains for the work 
W produced from a quantity of caloric, Q, supplied at  a temperature, T, 
in a cycle of finite range T to To, an expression equivalent to the 
following :- 

W=AQ(T-To). 
Carnot was unable to reconcile this solution with the imperfect 

experimental data available in his day, and particularly with the 
observation of Delaroche and BBrard, supported by Laplace’s theory, 
that the specific heat of air, S,, diminished with increase of pressure, 
which we know now, from the experiments of Regnault, to have been 
incorrezt. He therefore made no serious attempt to apply the solution, 
and subsequent writers have apparently failed to  observe that it is the 
correct final solution of the problem on the caloric theory. With our 
present knowledge, it is easy to see that this solution of Carnot’s is also 
consistent with the mechanical theory, and contains implicitly all the 
relations of heat and work so far as they relate to reversible processes. 
The quantity, Q, of caloric remains constant in reversible expansion 
such as is postulated by Carnot, when no heat is supplied. The work 
done is directly proportional to the temperature range T-To. The 
absolute motive power or equivalent work-value of a quantity of 
caloric, Q, supplied a t  a temperature, T, is the maximum work obtainable 
from a perfect gas (and therefore from any other substance whatever) 
when T,=O, namely, AQT. The efficiency of the cycle with range T 
to T,, is \v/AQT=(T-To)/T. Tho external work done in the cycle is 
the difference of the work-values of the caloric supplied and rejected, a 
result which is readily extended to cycles of any form. 

To complete Carnot’s solution, it is necessary t o  enquire-what happens 
to caloric in irreversible processes, such as friction, or the direct passage 
of heat from a hotter to a colder body. Carnot, as me see from his 
posthumous notes, had already, before his early death in 1832, arrived 
ah the general conception of the conservation of motive power, and had 
planned experiments in which the motive power consumed in friction 
should be measured a t  the same time as the caloric generated. Accord- 
ing to his theory, it ~vould lisvc been natural to assume that the motive 

0 2  
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power of the caloric generated a t  any temperature, namely AQT, should 
br? equal to the motive power consumed in friction. But he realised 
that further experimental evidence was necessary, which was first 
supplied by Joule. 

A quantity of caloric is defined in Carnot's equation as measured by 
work done in a Carnot cycle per degree fall. The absolute unit of 
caloric, which may appropriately be called the CARXOT, is that quantity 
which is capable of doing one joule of work per degree fall. The 
mechanical equivalent of Q carnots at T Abs. is QT joules. From 
Carnot's data, the work done in a cycle per gramme of steam vaporised 
a t  100°C. per degree fall is 0.611 kilogrammetres, or nearly 6 joules. 
The caloric of vaporisation is 6 carnots. Similarly, from Kelvin's 
data for the pressure required to lower the freezing point 1"C., the caloric 
of fusion of ice is 1.2 carnots. Since this definition is independent of 
calorimetric measurements, i t  may be employed in a calorimetric test, 
in which steam is condensed a t  100°C. on one side of a conduct- 
ing partition while ice is melted at 0°C. on the other, to deter- 
mine by direct experiment what happens when caloric falls irreversibly 
by conduction from 100°C. to 0°C. We know that for each gramme of 
steam condensed, or for each 6 carnots supplied a t  lOO"C., 540/796 
grammes of ice approximately would be melted, or 8.17 carnots of 
caloric would appear a t  0°C. The quantity of caloric is increased in 
the proportion 3731273. The motive power of the caloric remains 
constant if no useful work is done. The increase of the quantity of 
caloric is the same as if the available motive power AQ(T-TJ had 
been developed and converted into heat by friction a t  the lower tem- 
perature. Whenever motive power is wasted in friction, or " in the 
useless re-establishment of the equilibrium of caloric," a quantity of 
caloric equivalent to the wasted motive power is generated. The total 
quantity of caloric in an isolated system remains constant only if all 
the transformations are reversible, in which case the motive power 
developed exactly suffices to restore the initial state. In  all other 
cases there is an increase of caloric. The old principle of the universal 
conservation of caloric, which is true only for reversible processes, must 
therefore be modified as follows :-" The total quantity of caloric In any 
system cannot be d.tm.lnbshed except by taking heat f r m  it." 

This principle, with various modifhations to suit special cases (such 
as conditions of constant temperature, pressure, or volume) is imme- 
diately recognised as one of the most fruitful in modern thermodyna- 
mics. But it appeals more forcibly to the imagination of the student, 
if established, as roughly sketched above, by a direct investigation of 
the properties of Carnot's caloric. 

The caloric theory is seen to be perfectly consistent with Carnot's 
principle end with the mechanical theory for all reversible processes. 
Caloric is the natural measure of a quantity of heat in accordance with 
Carnot's equation, if we adopt the gas-scale of temperature. The only 
defect of the caloric theory lay in the tacit assumption, so easily recti- 
fied, that  the ordinary calorimetric units were units of caloric. The 
quantity measured in an ordinary calorimetric experiment is the motive 
power or energy of the caloric, and not the caloric itself. If this had 
been realised in 1850, i t  would have been quite unnecessary to  recast 
and revolutionise the entire theory of heat. Evolution might have 
proceeded along safer lines, with the retention of caloric, and the investi- 
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gation of its properties, which are of such fundamental importance in all 
questions of equilibrium in physics. 

Since Carnot’s equation, dW/dt= QF’(t), was adopted without mate- 
rial modification into the mechanical theory, and &F’((t) remained 
simply a quantity of Carnot’s caloric (though Q was measured in energy 
units and F’(t) received the appropriate value J/T required to reduce 
energy units to caloric) it was inevitable that Carnot’s caloric should 
make its reappearance sooner or later in the mechanical theory. It 
first reappears, disguised as a, triple integral, in Kelvin‘s solution 
( “  Phil. Mag.,” 4, p. 305, 1852) of t,he problem of finding the available 
work in an unequally heated body. The solution (as corrected later) 
is equivalent to the statement that the total quantity of caloric remains 
constant when the equalisation of temperature is effected reversibly. 
Caloric reappeared next as the “ thermodynamic function ” of Rankine, 
and the ‘‘ equivalence-value of a transformation ” (Clausius “Pogg. 
Ann.,” 93, p. 497, 1854). Finally, in 1865, when it; importance was 
more fully recognised, Clausius (“ Pogg. Ann.,” 125, p. 390) gave’it 
the name of “ entropy,” and defined it as the integral of dQ/T. Such 
a definition appeaIs to the mathematician only. In  justice to Carnot, 
it should be called caloric, and defined directly by his equation W= 
A&(T-To), which any schoolboy could understand. Even the mathe- 
matician would gain by thinking of caloric as a fluid, like electricity, 
capable of being generated by friction or other irreversible processes. 
Conduction of caloric is closely associated with the electrons, and the 
science of heat would gain, like the science of electricity, by attaching 
a more material conception to the true measure of a quantity of heat, 
as distinguished from a quantity of thermal energy. 

A vote of thanks to Prof. CALLENDAR for his Presidential Address 
moved by Dr. CHREE and seconded by Dr. RUSSELL, was carried unani- 
mously. 


