Understanding self-supervised Learning Dynamics without Contrastive Pairs

Yuandong Tian¹

facebook Artificial Intelligence

Xinlei Chen¹

Surya Ganguli^{1,2}

¹ Facebook AI Research ² Stanford University

Code: <u>https://github.com/facebookresearch/luckmatter/ssl</u>

Self-supervised Learning (SimCLR)

SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Self-supervised Learning (SimCLR)

SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **facebook** Artificial Intelligence **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **facebook** Artificial Intelligence **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

A simple model

Learning Dynamics

$$\bar{\boldsymbol{x}}(\boldsymbol{x}) := \mathbb{E}_{\boldsymbol{x}' \sim p_{\text{aug}}(\cdot | \boldsymbol{x})} [\boldsymbol{x}']$$

$$X = \mathbb{E} [\bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^{\mathsf{T}}]$$

$$X' = \mathbb{E}_{\boldsymbol{x}} [\mathbb{V}_{\boldsymbol{x}' | \boldsymbol{x}} [\boldsymbol{x}']]$$

Lemma 1. BYOL learning dynamics following Eqn. 1:

$$\dot{W}_p = \alpha_p \left(-W_p W(X + X') + W_a X\right) W^{\mathsf{T}} - \eta W_p$$
$$\dot{W} = W_p^{\mathsf{T}} \left(-W_p W(X + X') + W_a X\right) - \eta W$$
$$\dot{W}_a = \beta \left(-W_a + W\right)$$

Hyper-parameter	Description
α_p	Relative learning rate of the predictor
η	Weight decay
β	The rate of Exponential Moving Average (EMA)

Stop-Gradient do not work

<u>Theorem 2</u>: No Stop-Gradient doesn't work $(W \rightarrow 0)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{vec}(W) = -\left[X' \otimes (W_p^{\mathsf{T}} W_p + I) + X \otimes \tilde{W}_p^{\mathsf{T}} \tilde{W}_p\right] \operatorname{vec}(W)$$

$$\mathsf{PSD matrix}$$

Here
$$\widetilde{W_p} \coloneqq W_p - I$$

Assumptions

<u>Assumption 1</u> (Isotropic Data and Augmentation): X = I and $X' = \sigma^2 I$

<u>Assumption 2</u>: the EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function of W(t)

Symmetrization of the dynamics

<u>Assumption 3</u> (Symmetric predictor W_p): $W_p(t) = W_p^T(t)$

 W_p becomes more and more symmetric over training

The effect of Symmetrized Predictor W_p

Symmetric W_p affects the performance a lot!

Define **anti-commutator** $\{A, B\} \coloneqq AB + BA$:

$$\dot{W}_{p} = -\frac{\alpha_{p}}{2}(1+\sigma^{2})\{W_{p},F\} + \alpha_{p}\tau F - \eta W_{p}$$

$$\dot{F} = -(1+\sigma^{2})\{W_{p}^{2},F\} + \tau\{W_{p},F\} - 2\eta F$$

Here
$$F \coloneqq E[ff^T] = WXW^T$$

is the correlation matrix of the input of the predictor.

<u>Theorem 3</u>: Under certain conditions,

$$FW_p - W_pF \rightarrow 0$$
 when $t \rightarrow +\infty$

and thus the eigenspace of W_p and F gradually aligns.

Empirical Result says the same

Decoupled dynamics

When eigenspace aligns, the dynamics becomes decoupled:

$$\dot{p}_j = \alpha_p s_j \left[\tau - (1 + \sigma^2) p_j \right] - \eta p_j$$

$$\dot{s}_j = 2p_j s_j \left[\tau - (1 + \sigma^2) p_j \right] - 2\eta s_j$$

$$s_j \dot{\tau} = \beta (1 - \tau) s_j - \tau \dot{s}_j / 2.$$

Where p_j and s_j are eigenvalues of W_p and F

Invariance holds:
$$s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$$

State Space Dynamics (Phase Diagram)

Why BYOL doesn't collapse?

The Benefit of Weight Decay

Let
$$\Delta_j \coloneqq p_j \left[\tau - (1 + \sigma^2) p_j \right] - \eta$$

Eigenspace alignment condition

$$\Delta_j < \frac{1}{2} [\alpha_p (1 + \sigma^2) s_j + \eta]$$

facebook Artificial Intelligence

Higher weight decay leads to better satisfaction of alignment condition!

Relative learning rate of the predictor $lpha_p$

Positive ©

- 1. Large α_p shrinks the size of trivial basin
- 2. Relax the condition of eigenspace alignment

facebook Artificial Intelligence

Negative \mathfrak{S} With very large α_p , eigenvalue of F won't grow (and no feature learning)

Exponential Moving Average rate eta

 β large $\rightarrow W_a(t)$ catches W(t) faster

facebook Artificial Intelligence

Positive O: Slower rate (small β) relaxes the condition of eigenspace alignment

au needs to be small to satisfy **the eigenspace alignment condition**

$$p_j \tau - (1 + \sigma^2) p_j^2 < \frac{\alpha_p}{2} (1 + \sigma^2) s_j + \frac{3}{2} \eta$$
first order second order $s_j \sim p_j^2$ second order

Negative 😕: Slower rate makes the training slow and expands the size of trivial basin

DirectPred

- Directly setting W_p rather than relying on gradient descent update.
 - 1. Estimate $\hat{F} = \rho \hat{F} + (1 \rho) E[\boldsymbol{f} \boldsymbol{f}^T]$
 - 2. Eigen-decompose $\widehat{F} = \widehat{U}\Lambda_F \widehat{U}^T$, $\Lambda_F = \text{diag}[s_1, s_2, \dots, s_d]$
 - 3. Set W_p following the invariance:

$$p_j = \sqrt{s_j} + \epsilon \max_j s_j, \ W_p = \hat{U} \operatorname{diag}[p_j] \hat{U}^{\mathsf{T}}$$

Guaranteed Eigenspace Alignment

Performance of DirectPred on STL-10/CIFAR-10

Performance of DirectPred on ImageNet

ImageNet performance (60 epoch)

BVOI voriants	Accuracy	
DIOL variants	Top-1	Top-5
2-layer predictor (default)	64.7	85.8
linear predictor	59.4	82.3
DirectPred	64.4	85.8

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Performance of DirectPred on ImageNet

ImageNet performance (300 epoch)

300

