Understanding self-supervised Learning Dynamics without Contrastive Pairs

Yuandong Tian¹

Xinlei Chen¹

Surya Ganguli^{1,2}

¹ Facebook Al Research

² Stanford University

ICML 2021 Long oral

Code: https://github.com/facebookresearch/luckmatters/tree/master/ssl

Self-supervised Learning (SimCLR)

SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Self-supervised Learning (SimCLR)

 $\mathbf{x}_1, \mathbf{x}_2 \sim p_{\mathrm{aug}}(\cdot|\mathbf{x})$

No Human Label is Needed!

SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020]

SimSiam: [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020]

SimSiam: [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

A simple model

Objective:

$$J(W, W_p) := \frac{1}{2} \mathbb{E}_{\boldsymbol{x}_1, \boldsymbol{x}_2} \left[\|W_p \boldsymbol{f}_1 - \operatorname{StopGrad}(\boldsymbol{f}_{2\mathrm{a}})\|_2^2 \right]$$

Linear online network W

Linear target network W_a

Linear predictor W_p

Learning Dynamics

$$egin{aligned} ar{m{x}}(m{x}) &:= \mathbb{E}_{m{x}' \sim p_{ ext{aug}}(\cdot | m{x})} \left[m{x}'
ight] \ X &= \mathbb{E} \left[ar{m{x}} ar{m{x}}^{\intercal}
ight] \ X' &= \mathbb{E}_{m{x}} \left[\mathbb{V}_{m{x}' | m{x}} [m{x}']
ight] \end{aligned}$$

Lemma 1. BYOL learning dynamics following Eqn. 1:

$$\dot{W}_p = \alpha_p \left(-W_p W(X + X') + W_a X \right) W^{\mathsf{T}} - \eta W_p$$

$$\dot{W} = W_p^{\mathsf{T}} \left(-W_p W(X + X') + W_a X \right) - \eta W$$

$$\dot{W}_a = \beta (-W_a + W)$$

Hyper-parameter	Description
$lpha_p$	Relative learning rate of the predictor
η	Weight decay
β	The rate of Exponential Moving Average (EMA)

Stop-Gradient do not work

<u>Theorem 2</u>: No Stop-Gradient doesn't work ($W \rightarrow 0$)

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{vec}(W) = -\left[X' \otimes (W_p^{\mathsf{T}} W_p + I) + X \otimes \tilde{W}_p^{\mathsf{T}} \tilde{W}_p \right] \mathrm{vec}(W)$$
PSD matrix

Here
$$\widetilde{W_p} := W_p - I$$

Assumptions

<u>Assumption 1</u> (Isotropic Data and Augmentation): X = I and $X' = \sigma^2 I$

<u>Assumption 2</u>: the EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function of W(t)

Symmetrization of the dynamics

<u>Assumption 3</u> (Symmetric predictor W_p): $W_p(t) = W_p^T(t)$

 W_p becomes more and more symmetric over training

The effect of Symmetrized Predictor W_{p}

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & No \ predictor \ bias \\ sym \ W_p & regular \ W_p & sym \ W_p & regular \ W_p \\\hline\hline \hline & One-layer \ linear \ predictor \\\hline EMA & 75.09 \pm 0.48 & 74.51 \pm 0.47 & 74.52 \pm 0.29 & 74.16 \pm 0.33 \\ no \ EMA & 36.62 \pm 1.85 & 72.85 \pm 0.16 & 36.04 \pm 2.74 & 72.13 \pm 0.53 \\\hline\hline & Two-layer \ predictor \ with \ BatchNorm \ and \ ReLU \\\hline EMA & 71.58 \pm 6.46 & 78.85 \pm 0.25 & 77.64 \pm 0.41 & 78.53 \pm 0.34 \\ no \ EMA & 35.59 \pm 2.10 & 65.98 \pm 0.71 & 41.92 \pm 4.25 & 65.59 \pm 0.66 \\\hline\hline \end{array}$$

Symmetric W_p affects the performance a lot!

Symmetrized Dynamics

Define anti-commutator $\{A, B\} := AB + BA$:

$$\dot{W}_{p} = -\frac{\alpha_{p}}{2}(1+\sigma^{2})\{W_{p}, F\} + \alpha_{p}\tau F - \eta W_{p}$$

$$\dot{F} = -(1+\sigma^{2})\{W_{p}^{2}, F\} + \tau\{W_{p}, F\} - 2\eta F$$

Here $F := E[ff^T] = WXW^T$ is the correlation matrix of the input of the predictor.

Eigenspace Alignment

Theorem 3: Under certain conditions,

$$[F, W_p] \coloneqq FW_p - W_pF \to 0 \text{ when } t \to +\infty$$

and thus the eigenspace of W_p and F gradually aligns.

Empirical Result says the same

Decoupled dynamics

When eigenspace aligns, the dynamics becomes decoupled:

$$\dot{p}_{j} = \alpha_{p} s_{j} \left[\tau - (1 + \sigma^{2}) p_{j} \right] - \eta p_{j}$$

$$\dot{s}_{j} = 2 p_{j} s_{j} \left[\tau - (1 + \sigma^{2}) p_{j} \right] - 2 \eta s_{j}$$

$$s_{j} \dot{\tau} = \beta (1 - \tau) s_{j} - \tau \dot{s}_{j} / 2.$$

Where p_j and s_j are eigenvalues of W_p and F

Invariance holds: $s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$

State Space Dynamics (Phase Diagram)

Why BYOL doesn't collapse?

Strong Weight Decay

The Benefit of Weight Decay

Let
$$\Delta_j \coloneqq p_j [\tau - (1 + \sigma^2)p_j] - \eta$$

Eigenspace alignment condition

$$\Delta_j < \frac{1}{2} \left[\alpha_p (1 + \sigma^2) s_j + \eta \right]$$

Higher weight decay leads to better satisfaction of alignment condition!

facebook Artificial Intelligence

Relative learning rate of the predictor $lpha_p$

Positive ©

- 1. Large α_p shrinks the size of trivial basin
- 2. Relax the condition of eigenspace alignment

Negative $oldsymbol{\otimes}$ With very large α_p , eigenvalue of F won't grow (and no feature learning)

Exponential Moving Average rate $oldsymbol{eta}$

 β large $\rightarrow W_a(t)$ catches W(t) faster

Positive \odot : Slower rate (small β) relaxes the condition of eigenspace alignment

 τ needs to be small to satisfy the eigenspace alignment condition

$$p_{j}\tau - (1+\sigma^{2})p_{j}^{2} < \frac{\alpha_{p}}{2}(1+\sigma^{2})s_{j} + \frac{3}{2}\eta$$
 first order second order
$$s_{j} \sim p_{j}^{2} \text{ second order}$$

Negative 🖰: Slower rate makes the training slow and expands the size of trivial basin

DirectPred

• Directly setting \mathcal{W}_p rather than relying on gradient descent update.

- 1. Estimate $\hat{F} = \rho \hat{F} + (1 \rho) E[\mathbf{f} \mathbf{f}^T]$
- 2. Eigen-decompose $\hat{F} = \hat{U}\Lambda_F \hat{U}^T$, $\Lambda_F = \text{diag}[s_1, s_2, ..., s_d]$
- 3. Set W_p following the invariance:

$$p_j = \sqrt{s_j} + \epsilon \max_j s_j, \quad W_p = \hat{U} \operatorname{diag}[p_j] \hat{U}^{\mathsf{T}}$$

Guaranteed Eigenspace Alignment ©

Performance of DirectPred on STL-10/CIFAR-10

December 200 Classification Ton 1	Number of epochs				
Downstream Classification Top-1	100	300	500		
STL-10					
DirectPred	$\boxed{\textbf{77.86} \pm \textbf{0.16}}$	78.77 ± 0.97	78.86 ± 1.15		
DirectPred (freq=5)	L.				
SGD baseline	75.06 ± 0.52	75.25 ± 0.74	75.25 ± 0.74		
CIFAR-10					
DirectPred	$\boxed{\textbf{85.21} \pm \textbf{0.23}}$	88.88 ± 0.15	89.52 ± 0.04		
DirectPred (freq=5)	84.93 ± 0.29	88.83 ± 0.10	89.56 ± 0.13		
SGD baseline	84.49 ± 0.20	88.57 ± 0.15	89.33 ± 0.27		

Performance of DirectPred on ImageNet

ImageNet performance (60 epoch)

BYOL variants	Accuracy	
DIOL Variants	Top-1	Top-5
2-layer predictor (default)	64.7	85.8
linear predictor	59.4	82.3
DirectPred	64.4	85.8

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Performance of DirectPred on ImageNet

ImageNet performance (300 epoch)

BYOL variants	Accuracy	
BIOL variants	Top-1	Top-5
2-layer predictor (default)	72.5	90.8
linear predictor	69.9	89.6
DirectPred	72.4	91.0

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Thanks!