Understanding self-supervised Learning Dynamics without Contrastive Pairs

facebook Artificial Intelligence

Yuandong Tian¹ Xinlei Chen¹ Surya Ganguli^{1,2}

1 Facebook AI Research 2 Stanford University **ICML 2021 Long oral**

Code: https://github.com/facebookresearch/luckmatters/tree/master/ssl

Self-supervised Learning (SimCLR)

SimCLR: *[T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]*

Self-supervised Learning (SimCLR)

SimCLR: *[T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]*

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] facebook Artificial Intelligence **SimSiam:** *[X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]*

Non-contrastive SSL (BYOL/SimSiam)?

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] facebook Artificial Intelligence **SimSiam:** *[X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]*

A simple model

Learning Dynamics

$$
\left| \begin{array}{l} \bar{\boldsymbol{x}}(\boldsymbol{x}) := \mathbb{E}_{\boldsymbol{x}' \sim p_{\text{aug}}(\cdot|\boldsymbol{x})} \left[\boldsymbol{x}' \right] \\ X = \mathbb{E} \left[\bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^\intercal \right] \\ X' = \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{V}_{\boldsymbol{x}'|\boldsymbol{x}}[\boldsymbol{x}'] \right] \end{array} \right.
$$

Lemma 1. BYOL learning dynamics following Eqn. 1:

$$
\dot{W}_p = \alpha_p \left(-W_p W(X + X') + W_a X \right) W^{\mathsf{T}} - \eta W_p
$$
\n
$$
\dot{W} = W_p^{\mathsf{T}} \left(-W_p W(X + X') + W_a X \right) - \eta W
$$
\n
$$
\dot{W}_a = \beta(-W_a + W)
$$

Stop-Gradient do not work

Theorem 2: No Stop-Gradient doesn't work $(W \rightarrow 0)$

$$
\frac{\mathrm{d}}{\mathrm{d}t} \text{vec}(W) = -\left[X' \otimes (W_p^{\mathsf{T}} W_p + I) + X \otimes \tilde{W}_p^{\mathsf{T}} \tilde{W}_p\right] \text{vec}(W)
$$
PSD matrix

Here
$$
\widetilde{W}_p := W_p - I
$$

Assumptions

Assumption 1 (Isotropic Data and Augmentation): $X = I$ and $X' = \sigma^2 I$

Assumption 2: the EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function of $W(t)$

Symmetrization of the dynamics

 $\overline{Assumption~3}$ (Symmetric predictor W_p): $W_p(t) = W_p^T(t)$

 W_p becomes more and more **STL-10 Training Fig. 5 Symmetric** over training

The effect of Symmetrized Predictor W_p

Symmetric W_p affects the performance a lot!

Define anti-commutator $\{A, B\} \coloneqq AB + BA$:

$$
\dot{W}_p = -\frac{\alpha_p}{2} (1 + \sigma^2) \{ W_p, F \} + \alpha_p \tau F - \eta W_p
$$
\n
$$
\dot{F} = -(1 + \sigma^2) \{ W_p^2, F \} + \tau \{ W_p, F \} - 2\eta F
$$

Here
$$
F \coloneqq \mathbb{E}[ff^T] = W X W^T
$$

is the correlation matrix of the input of the predictor.

Eigenspace Alignment

Theorem 3: Under certain conditions,

$$
[F, W_p] := FW_p - W_p F \to 0 \text{ when } t \to +\infty
$$

and thus the eigenspace of W_p and F gradually aligns.

Empirical Result says the same

Decoupled dynamics

When eigenspace aligns, the dynamics becomes decoupled:

$$
\dot{p}_j = \alpha_p s_j \left[\tau - (1 + \sigma^2) p_j \right] - \eta p_j
$$
\n
$$
\dot{s}_j = 2p_j s_j \left[\tau - (1 + \sigma^2) p_j \right] - 2\eta s_j
$$
\n
$$
s_j \dot{\tau} = \beta (1 - \tau) s_j - \tau \dot{s}_j / 2.
$$

Where p_i and s_i are eigenvalues of W_p and F

Invariance holds:
$$
s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j
$$

State Space Dynamics (Phase Diagram)

Why BYOL doesn't collapse?

The Benefit of Weight Decay

Let
$$
\Delta_j := p_j [\tau - (1 + \sigma^2) p_j] - \eta
$$

Eigenspace alignment condition

$$
\Delta_j < \frac{1}{2} \left[\alpha_p (1 + \sigma^2) s_j + \eta \right]
$$

facebook Artificial Intelligence

Higher weight decay leads to better satisfaction of alignment condition!

Relative learning rate of the predictor α_n

Positive \odot

- 1. Large α_p shrinks the size of trivial basin
- 2. Relax the condition of eigenspace alignment

facebook Artificial Intelligence

Negative Θ With very large α_p , eigenvalue of F won't grow (and no feature learning)

Exponential Moving Average rate β

 β large \rightarrow $W_a(t)$ catches $W(t)$ faster

facebook Artificial Intelligence

Positive \mathbb{C} **:** Slower rate (small β) relaxes the condition of eigenspace alignment

needs to be small to satisfy **the eigenspace alignment condition**

$$
p_j \tau - (1 + \sigma^2) p_j^2 < \frac{\alpha_p}{2} (1 + \sigma^2) s_j + \frac{3}{2} \eta
$$

first order
second order

$$
s_j \sim p_j^2
$$
 second order

Negative \odot **:** Slower rate makes the training slow and expands the size of trivial basin

DirectPred

- Directly setting W_p rather than relying on gradient descent update.
	- 1. Estimate $\widehat{F} = \rho \widehat{F} + (1 \rho)E[f\mathbf{f}^T]$
	- 2. Eigen-decompose $\hat{F} = \hat{U} \Lambda_F \hat{U}^T$, $\Lambda_F = \text{diag}[s_1, s_2, ..., s_d]$
	- 3. Set W_p following the invariance:

$$
p_j = \sqrt{s_j} + \epsilon \max_j s_j, \ \ W_p = \hat{U} \text{diag}[p_j] \hat{U}^{\intercal}
$$

Guaranteed Eigenspace Alignment ©

Performance of DirectPred on STL-10/CIFAR-10

Performance of DirectPred on ImageNet

ImageNet performance (60 epoch)

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Performance of DirectPred on ImageNet

ImageNet performance (300 epoch)

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

