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Great Empirical Success of Deep Models



Representation Learning
What’s the difference between models 

before/after deep learning era?

Linear Regression Deep Models

Better representation 
is learned!
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• State Representation

Representation Learning in RL

[D. Hafner et al, Mastering Atari with Discrete World Models] [J. Schrittwieser et al, Mastering Atari, Go, Chess and Shogi 
by Planning with a Learned Model, Nature] 



Representation Learning in RL

• Action Representation
• Action embedding if we have a million of actions to choose from. 
• Action embedding to transfer across different tasks. 

[Y. Chandak, Learning Action Representations 
for Reinforcement Learning, ICML 2019]

[Z. Deng et al, DeepCF: A Unified Framework of Representation Learning and 
Matching Function Learning in Recommender System, AAAI 2019]



How about high-level representation?

• Representation of the entire policy?
• [A. Singh et al, Parrot: Data-Driven Behavioral Priors for Reinforcement Learning, ICLR 2021]

• Representation of the environment (multi-task learning)?



This Talk

Representation of the Action Space

Representation for Easier Search

Explored region

Unexplored region

Trajectory a

Trajectory b

Representation for RL Exploration



Representation of the Action Space



Optimization Problems

Travel Salesman Problem Job Scheduling Vehicle Routing

Bin Packing Protein Folding Model-Search



There exists many MDPs for a single optimization!

Name Ways of Parameterization

One-shot Prediction Spec à Solution

Progressive Prediction Spec à SolPart1 à SolPart2 à SolPart3 

Iterative Refinement Spec à Sol1 à Sol2 (improved) à Sol3 (Better Improved)

Learned Action Space Spec à All solution space à Small solution space à …

Representation Matters!



Direct predicting solutions

[O. Vinyals. et al, Pointer Networks, NIPS 2015]

Convex hull

Seq2seq model

[H. Mao et al, Resource Management with Deep Reinforcement
Learning, ACM Workshop on Hot Topics in Networks, 2016]

Schedule the job
to i-th slot

Policy gradient



Local Rewriting Framework

Start from a feasible solution and 
iteratively converges to a good solution
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Xinyun Chen Yuandong Tian

[X. Chen and Y. Tian, Learning to Perform Local Rewriting
for Combinatorial Optimization, NeurIPS 2019]
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Current State
(i.e. Solution) Region-Picker Rule-Picker



Online Job Scheduling

Earliest Job First (EJF)
Shortest Job First (SJF)
Shortest First Search (SJFS)
DeepRM

Google OR-tools (OR-tools)
SJF-offline

Baselines:

Offline baselines:

D: Number of resources
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Expression Simplification

Z3-simplify
Z3-ctx-solver-simplify
Heuristic Search
Halide rules

Baselines:

Follow-up work: Getting rid of manually specified rules
[H. Shi et al., Deep Symbolic Superoptimization without Human Knowledge, ICLR 2020]
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Capacitated Vehicle Routing

Code is available: https://github.com/facebookresearch/neural-rewriter

https://github.com/facebookresearch/neural-rewriter


Predefined Action Space

Fixed action space = 𝑅+,-

[B. Zoph and Q. Le, Neural Architecture Search with Reinforcement Learning, 2016]

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with 
a deep reinforcement learning inspired architecture]



Predefined Action Space

Fixed action space = 𝑅+,-

[B. Zoph and Q. Le, Neural Architecture Search with Reinforcement Learning, 2016]

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with 
a deep reinforcement learning inspired architecture]

Why Predefined 
Action Space?



Why Predefined Action Space?

We only care the final solution

We don’t care how we get it.



Different Representation matters 

Goal: Find the network 
with the best accuracy using fewest trials.

Depth = {1, 2, 3, 4, 5}
Channels = {32, 64}
KernelSize = {3x3, 5x5}

Representation of action space

Sequential = { add a layer, set K, set C }
Global = { Set depth, set all K, set all C }

Global is better!

21

1364 networks. 



The Meaning of Learning Action Space

Change the semantic 
meaning of the edges. 

Not allowed in games, but doable in optimization. 



Learning Action Space

Partition = Action

[L. Wang, R. Fonseca, Y. Tian, Learning Search Space Partition for Black-box Optimization 
using Monte Carlo Tree Search, NeurIPS 2020]

[L. Wang, S. Xie, T. Li, R. Fonseca, Y. Tian, Sample-Efficient Neural Architecture Search by 
Learning Action Space, TPAMI 2021]

Saining Xie Teng Li Rodrigo Fonseca Yuandong TianLinnan Wang



Different Partition à Different Value Distribution

Accuracy



Learn action space

#filters

depth

98%

96%

83%

10%

60%

30% 35%

Action 1=”right”

Action 1=”left”

“left” “right”

Current node whose
action space is learned
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1

𝑥2

1

2 3

4 5 76

4

5

7
6

Nonlinear boundary
learnt by SVM

2

3

𝑥3

2 3

1

Nonlinear Partition

Build local models

[L. Wang, et al, Learning Search Space Partition for Black-box Optimization using MCTS, NeurIPS 2020]

𝒇(𝒙)



Approach

Fixed action branches
(but not action space)

Accuracy
(filter=2, depth=5) 85%
(filter=3, depth=7) 92%

(a) Train the action space.

Getting the true quality 𝒇(𝒙) for the solution 𝒙

(b) Search using learned action space until
a fixed #rollouts are used.

Monte Carlo Tree Search
(MCTS)



Why Exploration is Important

“left” “right”

Optimal

OK solutions 
but not optimal

Most solutions are bad but there 
exists an optimal one

Bad solution

OK solution

Optimal solution



Performance
Customized dataset: LSTM-10K (PTB)
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Performance
Customized dataset: ConvNet-60K (CIFAR-10, VGG style models)

30



Performance
NASBench-101 (CIFAR-10, 420k models, NASNet Search Space)

Each curve is repeated 100 times. We randomly pick 2k models to initialize.
31



Open Domain

CIFAR-10
(NASNet style
architecture)
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Open Domain

ImageNet
(mobile setting
Flop < 600M)

33



La-MCTS as a meta method

Ackley-100dAckley-20d

Rosenbrock-100dRosenbrock-20d

Ackley-2d

Rosenbrock-2d

𝑥∗ = argmin
"∈$

𝑓(𝑥)



Optimizing linear policy for Mujoco tasks

(e) Ant, #params = 888(d) Half-Cheetah, #params =102

(b) Hopper, #params = 33 (c) Walker-2d, #params = 102

(f) Humanoid, #params = 6392

(a) Swimmer, #params = 16



Multi-Objective Optimization

Vehicle Safety 
(3 objective)

Branin-Currin problem
(2 objective)

Waveguide 

HV: Hyper Volume of the Pareto Frontier

qEHVI: https://arxiv.org/pdf/2006.05078.pdf

https://arxiv.org/pdf/2006.05078.pdf


Code is public now!

https://github.com/facebookresearch/LaMCTS

Both 3rd and 8th teams in NeurIPS 2020 Black-box optimization 
competition use our method! 



Representation for Easier Search



Search in Imperfect Information Games

Perfect Information Games (Tree) Imperfect Information Games (DAG)



Imperfect Information Game 101

01

Card of P1 Card of P2 

Complete information state 
or “history” h

Deal one private card (0/1) to Player 1
Deal one private card (0/1) to Player 2 

00 01 10 11
4 possibilities:



Imperfect Information Game 101

Nature 

00 01 10 11

01
Card of P1 Card of P2 

Player 1
Information Set 𝐼
(or “Infoset”)

Complete states within the same infosets have the same policy. 
(since Player 1 doesn’t know the private card of Player 2)



Imperfect Information Game 101

a

Nature 

00 01 10 11

01
Card of P1 Card of P2 

Player 1

Action



Imperfect Information Game 101

a

Nature 

00 01 10 11

01
Card of P1 Card of P2 

00a 10a 01a 11a

Player 1

Player 2

The action is public, so it is in the history of game



Imperfect Information Game 101

a

Nature 

00 01 10 11

01
Card of P1 Card of P2 

00a 10a 01a 11a

Player 1

Player 2

The DAG circle is here. 



Imperfect Information Game 101

a

Nature 

00 01 10 11

01
Card of P1 Card of P2 

00a 10a 01a 11a

Player 1

Player 2 00b 10b 01b 11b

b

Action is public! 



Optimizing one node at a time à Local optimum! 

A unilateral change of policy doesn’t improve co-operative communication
(many single-agent DRL approach improves by unilateral changes of agent policy)

Broken
French

Native
French

C'est la 
vie…

Switch to English??
No...she speaks French

and might be
unhappy…



Optimizing one node at a time à Local optimum! 

English French

English French English French

Player 1

+1 -1 -1 +0.5

Player 2

Player 2 makes the decision
without knowing player 1’s action.

(French, French):
local Nash Equilibrium +0.5

(English, English):
global Nash Equilibrium +1.0

𝐼2

𝐼3

A joint optimization of policy 𝜎(𝐼2) and 𝜎(𝐼3) yields optimal solution

ℎ



Naïve Formulation

Game DAG

a b

ℎ ∈ 𝑍 terminal states when the reward is revealed

Change policy 𝜎 → 𝜎′:

Take action 𝒂 rather than 
action 𝒃 at infosets 𝐼

Idea: 

1. Pick a subtree and do local improvement
2. Multiple infosets need to be picked for 

joint policy search

But, things are complicated!

Terminal states

Reachability
Value at the 
terminal

Game value

active infosets
𝜎 → 𝜎′



Dependency between policies

ℎ′

A change of 𝜎(𝐼-, 𝑎) affects all the
reachability of down-stream states and/or
infosets, no matter they are active or not.

A trajectory could re-enter into another active
set and leave and re-enter again.

The value of an inactive infoset 𝐼+ will change
since the reachability to 𝐼+ changes.

An infoset might contain both affected states
and unaffected states.

𝐼2

𝐼3

a

𝐼<

𝐼=

abc

c

ℎ

ℎ′′

𝝈 𝑰𝟏, 𝒂 → 𝝈′(𝑰𝟏, 𝒂)

Do we need to consider all infoSets?



Policy-change Density

Two key properties:
(a) Its summation yields

overall value changes

(b) For regions whose policy doesn’t change, it vanishes
even if policy changes at downstream/upstream states.

𝜎 ≠ 𝜎′ 𝝆","$ ℎ = 0

ℎ

Qucheng GongYuandong Tian Tina Jiang

[Y. Tian et al, Joint Policy Search for Multi-agent Collaboration 
with Imperfect Information, NeurIPS 2020]



Value Changes w.r.t Localized Policy Change

Main Theorem (New representation of value change)

Inactive Infosets doesn’t matter!!

Overall value changes

All active Infosets
where 𝝈$ ≠ 𝝈

Only depend on 𝝈′ via 
reachability 𝝅𝝈$(𝒉)



JPS (Joint Policy Search)
𝐼2

𝐼3

𝐼<

𝐼=

P1

abc

c

P2

P1

P3

1. Initial infosets 𝐼?@AB = {𝐼2}
2. Pick 𝐼 ∈ 𝐼?@AB
3. Pick an action 𝑎
4. Set 𝜎C 𝐼, 𝑏 = 𝛿 𝑎 = 𝑏
5. Compute 𝜌D,D!

6. Set 𝐼?@AB = Succ(𝐼, 𝑎)

a

a a

b

c

Repeat until maximal depth D 
is reached.

Backtrace
(depth-first search)



Performance

JPS can improve existing policies, and help it jump out of local optima



Sample-based JPS

Sample 𝒉 in each 𝑰



Sample-based JPS

Simple Biddings (N=16)



Contract Bridge Bidding

Methods Vs. WBridge5 (1000 games) 
(IMPs/board)

Previous SoTA (Rong et al, 2019) + 0.25 (on 64 games)
Our A2C baseline + 0.29 ± 0.22
1% JPS (2 days) + 0.44 ± 0.20
5% JPS (2 days) + 0.37 ± 0.19
1% JPS (14 days) + 0.63 ± 0.20

WBridge5: Champions of computer bridge tournament in 2005, 2007, 2008, 2016-2018



Representation for RL Exploration



Exploration in Environment with Sparse Reward

Goal

Key

Agent
(partial observability)

No external reward

when agent wonders around.
when agent picks the key
when agent opens all doors
when agent opens the locked door
…

until the agent reaches the goal 



And more complicated situations...

Goal Keys are hidden in the boxes

Need to move obstacles around

Many doors are locked



Count-based Exploration
Low visitation counts 𝑁(𝑠)
High intrinsic rewards

High visitation counts 𝑁(𝑠)
Low Intrinsic reward 

What if we have exponential #states?
[Bellemare, Marc, et al. "Unifying count-based exploration and intrinsic motivation." Advances in neural information processing systems. 2016]



Random Network Distillations (RND)

Random fixed 
target networkOnline Network

Familiar state = low prediction error
[Y. Burda et al, Exploration by Random Distillation Network, ICLR 2019]



BeBold

RND for t+1 RND for t

Episodic visitation count 
(Hash Table)

Observation (rather than full state)

Trajectory

BeBold = Beyond the Boundary of Explored Regions

Tianjun Zhang Huazhe Xu Xiaolong Wang Yi Wu Kurt Keutzer Joseph Gonzalez Yuandong Tian

[T. Zhang et al, BeBold: Exploration Beyond the Boundary of Explored Regions, arXiv 2020]



Visitation 
count

High reward

Visitation 
count

Diminishing 
reward

Visitation 
count

Exploration Policy learning

Repeat

BeBold





MiniGrid

[Chevalier-Boisvert, Maxime, Lucas Willems, and Suman Pal. "Minimalistic gridworld environment for openai gym." GitHub repository (2018)]



AMIGO: [C. Andres, et al. "Learning with AMIGo: Adversarially Motivated Intrinsic Goals." ICLR 2021]

RIDE:   [R. Roberta, and Tim Rocktäschel. "RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments.", ICLR 2020]

ICM:   [P. Deepak, et al. "Curiosity-driven exploration by self-supervised prediction." CVPR Workshops. 2017.]

Easy

Medium

Hard



Pure Exploration in MiniGrid



Ablation Study



NetHack

Agent States

[Küttler, Heinrich, et al. "The NetHack Learning Environment." arXiv preprint arXiv:2006.13760 (2020)]



6 Tasks in NetHack



MonteZuma’s Revenge 



Huge Performance Difference with different 
Representations 

Random = vanilla BeBold
DBC = deep bisimulation control
SR = Successor Representation



Thanks!
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