Towards Principled Approaches for Empirical Problems

Yuandong Tian

Research Scientist and Manager

Facebook AI Research

Object Recognition

Medical

Translation

Speech Recognition

Personalization

Surveillance

Smart Design

Board game

https://www.kaggle.com/getting-started/149448

AlphaGo (2016)

Chess

Shogi

Dota 2

StarCraft 2

Initialized by Human

The importance of being on twitter

by Jerome K. Jerome London, Summer 1897

It is a curious fact that the last remaining form of social life in which the people of London are still interested is Twitter. I was struck with this curious fact when I went on one of my periodical holidays to the sea-side, and found the whole place twittering like a starling-cage. I called it an anomaly, and it is.

I spoke to the sexton, whose cottage, like all sexton's cottages, is full of antiquities and interesting relics of former centuries. I said to him, "My dear sexton, what does all this twittering mean?" And he replied, "Why, sir, of course it means Twitter." "Ah!" I said, "I know about that. But what is Twitter?"

https://twitter.com/quasimondo/status/1284509525500989445

Will this trend continue?

facebook Artificial Intelligence

https://openai.com/blog/ai-and-compute/

Will this trend continue?

11

At first, I cannot do parameter sweeping

Then I cannot train the model

Then I cannot do fine-tuning

Then I cannot run one forward pass

Then I cannot even download the model

... 11

facebook Artificial Intelligence

https://openai.com/blog/ai-and-compute/

Will this trend continue?

facebook Artificial Intelligence

https://openai.com/blog/ai-and-compute/

Is Black-box Model Enough?

This is an apple

"Some Nonlinear Transformation"

Using Black-box Model is tricky

Adversarial samples

"panda"

57.7% confidence

"gibbon" 99.3% confidence

Stop sign \rightarrow a 45 mph sign

Data Poisoning

Interpretability

D. Blau, Network Dissection: Quantifying Interpretability of Deep Visual Representations, CVPR 2017

Let's Check the History

Alchemy

Periodic Table of the Elements

IA																	VIIIA
1 H drogen 1.008	2				Atomic Number	·→ F	¹ ┫ ←	Symbol				13	14	15	16	17	Helium 4.0026
1 3 ithium 6.94	Be Berytlium 9.0122	State of	matter (color of n	iame) Subc	Name Electrons per shell ategory in the me	t → Hydr 1.0	nmetal trend (colu	Atomic Weight or of background)			renetiae	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15,999	9 F Fluorine 18,998	2 10 Ne 20,180
n Na	12 Mg Magnesium	3	4	■ Al ■ Al ■ Tr	Actimites Actimites Persentations Personal activities Personal act							16 S Sulfur	17 Cl Chlorine	18 Argon			
19 2-8-1 19	24305 2-8-2 20 Ca	21 Sc	1VB 22 Ti	VB 23 V	24 Cr	viib 25 Mn	viiiB Fe	viiiB 27 Co	28 Ni	29 Cu	³⁰ Zn	^{26,962} 2-8-3 31 Ga	^{28.085} 2-8-4 32 Ge	30.974 2-8-5 33 AS	32.06 2-3-6 34 Se	35.45 2.87 35 Br	39,948 2-8-8 Kr
assium 9.0983 88-8-1 37	Calcium 40.078 2-8-8-2 38	Scandium 44.955908 2-8-9-2 39 V	^{47,867} 2-8-10-2 40 7 r	Vanadium 50.9415 2-8-11-2 41	Chromium 51.9961 2-8-13-1 42 Mo	Manganese 54.938044 2-8-13-2 43	44 R 11	Cobalt 58.933 2-8-15-2 45	Nickel 58.693 2-8-16-2 46 Pd	Copper 63.546 2-8-18-1 47	2inc 45.38 2-8-18-2 48	Gallium 69.723 2-8-18-3 49	Germanium 72.630 2-8-18-4 50	Arsenic 74.922 2-8-18-5 51 Sh	Selenium 78.971 2-8-18-6 52	Bromine 79.904 2-8-18-7 53	54
bidium 5.4678 -8-18-8-1 55	Strontium 87.62 2-8-18-8-2 56	Yttrium 88.90584 2-8-18-9-2	Zirconium 91.224 2-8-18-10-2 72	Niobium 92.90637 2-8-18-12-1 73	Molybdenum 95.95 2-8-18-13-1 74	Technetium (98) 2-8-18-13-2 75	Ruthenium 101.07 2-8-18-15-1 76	Rhodium 102.91 2-8-18-16-1 77	Palladium 106.42 2-8-18-18 78	Silver 107.87 2-8-18-18-1 79	Cadmium 112.41 2-8-18-13-2 80	Indium 114.82 2-8-18-18-3 81	Tin 118.71 2-8-18-18-4 82	Antimony 121.76 2-8-18-18-5 83	Tellurium 127.60 2-8-13-18-6 84	Iodine 126.90 2-8-18-18-7 85	Xenon 131.29 2-8-18-18-8 86
S esium 90545196 1-18-18-8-1	Barium 137.327 2-8-18-13-8-2	57-71 Lanthanides	Hf Hafnium 178.49 2-8-18-52-10-2	Tantalum 180.94788 2-8-18-52-11-2	Tungsten 183.84 2-8-18-32-12-2	Renium 186.21 2-8-18-32-13-2	Osmium 190.23 2-8-18-32-34-2	Iridium 192.22 2:8-18-32-15-2	Platinum 195.08 2-8-18-32-17-1	Gold 196.97 2-8-18-32-18-1	Hg Mercury 200.59 2-8-18-32-18-2	Thallium 204.38 2-8-18-32-18-3	Pb Lead 207.2 2-8-18-32-18-4	Bismuth 208,98 2-8-18-32-18-5	Polonium (209) 2-8-18-32-18-6	Astatine (210) 2-8-18-32-18-7	Rn Radon (222) 2-8-18-32-18-8
87 ancium (223) 8-32-18-8-1	88 Ra Radium (226) 2-8-13-32-18-8-2	89-103 Actinides	104 Rf Rutherfordium (267) 2-8-18-32-32-10-2	105 Db Dubnium (268) 2-8-18-32-32-11-2	106 Sg Seaborgium (269) 2-8-18-32-32-12-2	107 Bh Bohrium (270) 2-8-38-32-32-13-2	108 Hassium (277) 2-8-18-32-32-14-2	109 Mt Meitnerium (278) 2-8-18-32-32-15-2	110 DS Darmstadtium (281) 2-8-18-32-32-17-1	111 Rg Roentgenium (282) 2-8-18-32-32-17-2	112 Copernicium (285) 2-8-18-32-32-38-2	113 Nh Nihonium (286) 2-8-18-32-52-18-3	114 Flerovium (289) 2-8-18-32-32-18-4	115 Mc Moscovium (290) 2-8-18-32-32-38-5	Livermorium (293) 2-8-18-32-32-18-6	117 TS Tennessine (294) 2-8-18-32-32-38-7	118 Oganesson (294) 2-8-18-32-32-18-8
		57 La	58 Ce	59 Pr Praseodymium	60 Nd	61 Pm Promethium	Samarium	63 Eu	64 Gd Gadelinium	65 Tb Terhium	by Dysorosium	67 Ho Holmiun	68 Er	69 Tm	70 Yb	71 Lu	
		138.91 2-8-19-19-9-2 89 Actinium (227)	140.12 2-8-18-17-9-2 90 Th Thorium 232.04	140.91 2-8-18-21-8-2 91 Pa Protactinium 231.04	144.24 2-8-18-22-8-2 92 Uranium 238.03	(145) 2-8-10-22-8-2 93 Neptunium (237)	150.36 2-8-18-24-8-2 94 Putonium (244)	151.96 2.8-18-25-8-2 95 Americium (243)	157.25 2.6.18-25.9-2 96 Carium (247)	158.73 2.8-18-27.8-2 97 Bk Berkelium (247)	162.50 2.4-13-28-6-2 98 Cf Californium (251)	144.93 2.6.18-23-0-2 99 Es Einsteinium (252)	167.26 2.4-18-30-8-2 100 Fermium (257)	146.93 2.0-10-33-0-2 101 Md Mendelevium (250)	173.05 2.8-18-32-8-2 102 Nobelium (259)	174.97 2-8-18-32-9-2 103 Lawrencium (266)	
		2-8-18-32-18-9-2	2-8-18-32-18-10-2	2-8-18-32-20-9-2	2-8-18-32-21-9-2	2-8-18-32-72-9-2	2-8-18-32-26-8-2	2-8-18-32-25-8-2	2-8-18-32-25-9-2	2-8-18-32-27-8-2	2-8-18-32-28-8-2	2-8-18-32-29-8-2	2-8-18-32-30-8-2	2-8-18-32-31-8-2	2-8-18-32-32-8-2	2-8-18-32-32-8-3	

Chemistry

The Black Powder

${}^{2}\!\mathrm{KNO}_{3} + {}^{\mathbf{S}}\!+ {}^{3}\!\mathrm{C} \rightarrow \mathrm{K}_{2}\mathrm{S} + \mathrm{N}_{2}\uparrow + 3\mathrm{CO}_{2}\uparrow$

2 mol : 1 mol : 3 mol Best mass ratio. 74.64% : 11.85% : 13.51%

Black Powder Ratio in the History

	KNO ₃	S	С	
Song Dynasty (1044 AD)	50%	25%	25%	
Early Ming Dynasty (~1400 AD)	71.4%	14.3%	14.3%	
Mid Ming Dynasty (~1550 AD)	75.8%	10.6%	13.6%	
Qing Dynasty (1753 AD)	80%	10.51%	9.88%	
Qing Dynasty (1818 AD)	77.8%	9.7%	12.5%	
Qing Dynasty (1839 AD)	74%	11%	15%	
Current Standard	75%	10%	15%	

Kepler's laws of planetary motion

Johannes Kepler (开普勒)

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

Tycho Brahe's Mars Observations

Tycho Brahe (第谷)

How many curves can you fit with modern machine learning?

Tycho Brahe's Mars Observations

Tycho Brahe (第谷)

The true curve computed from the modern methods

facebook Artificial Intelligence

http://www.pafko.com/tycho/observe.html

Theory that matches with Practice

Theory that doesn't match with Practice

How can we move forward?

Theory and Practice

How to develop theory?

Theory and Practice

How to develop empirical work?

Theory and Practice

The best research work we could imagine:

Super Hard ... But that's the way to go!

Theoretical Understanding of Models and Algorithms

facebook Artificial Intelligence

Career Path

The Charm of Games

<image>

Realistic Worlds

Game as a Vehicle of AI

Controllable and replicable

Low cost per sample

Complicated dynamics with simple rules.

Faster than real-time

facebook Artificial Intelligence

Less safety and ethical concerns

How Game AI works

Even with a super-super computer, it is not possible to search the entire space.

How Game AI works

Even with a super-super computer, it is not possible to search the entire space.

A good counter move eliminates other choices.

Move order is important!

Alpha-beta Pruning

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

How to model Policy/Value function?

Non-smooth + high-dimensional

Sensitive to situations. One stone changes in Go leads to different game.

Traditional approach

- Many manual steps
- Conflicting parameters, not scalable.
- Need strong domain knowledge.

Deep Learning

- End-to-End training
 - Lots of data, less tuning.
- Minimal domain knowledge.
- Amazing performance

AlphaGo Series

AlphaGo Lee (Mar. 2016)

AlphaGo Master (May. 2017)

AlphaGo Zero (Oct. 2017)

Without Human Knowledge

The Mystery

- Mystery
 - Is the proposed algorithm really universal?
 - Is the bot almighty? Is there any weakness in the trained bot?
- Lack of Ablation Studies
 - What factor is critical for the performance?
 - Is the algorithm robust to random initialization and changes of hyper parameters?
 - Any adversarial samples?

Impressive Results, No code, No model

Demystify existing empirical results Good performance Reproducibility

OpenGo project

Yuandong Tian

Jerry Ma*

*Equal Contributions

Qucheng Gong*

Shubho Sengupta*

Zhuoyuan Chen James Pinkerton

Larry Zitnick

facebook Artificial Intelligence

[Y. Tian et al., ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, ICML 2019]

AlphaGoZero / AlphaZero

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

The idea of Self-Play

Stroke left and right (左右互搏)

Generate Self-play Games

Update Models

AlphaGo Zero Strength

- 3 days version
 - 4.9M Games, 1600 rollouts/move
 - 20 block ResNet
 - Defeat AlphaGo Lee.
- 40 days version
 - 29M Games, 1600 rollouts/move
 - 40 blocks ResNet.
 - Defeat AlphaGo Master by 89:11

ELF OpenGo

- System can be trained with 2000 GPUs in 2 weeks (20 block version)
- Superhuman performance against professional players and strong bots.
- Abundant ablation analysis
- Decoupled design, code reusable for other games.

facebook Artificial Intelligence We open source the code and the pre-trained model for the Go and ML community

ELF OpenGo Performance

<u>Vs top professional players</u>

Name (rank)	ELO (world rank)	Result
Kim Ji-seok	3590 (#3)	5-0
Shin Jin-seo	3570 (#5)	5-0
Park Yeonghun	3481 (#23)	5-0
Choi Cheolhan	3466 (#30)	5-0

Single GPU, 80k rollouts, 50 seconds Offer unlimited thinking time for the players

Vs professional players

Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

Vs strong bot (LeelaZero)

[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Distributed System

Yuxin Wu

Yuandong Tian Qucheng Gong

Wenling Shang

Larry Zitnick

[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games, NIPS 2017]

Putting AlphaGoZero and AlphaZero into the same framework

AlphaGoZero (more synchronization) AlphaZero (less synchronization)

Server controls synchronization Server also does training.

Training Stage of Final Model

Prototype- α = strong amateur level

Prototype- β = professional level

Prototype = superhuman level
(model against professional players)

A lot of zig-zag in the training process

Ladder Issues

Run a ladder and lost

Run shorter ladder and lost

Doesn't run ladder

There is only one long path that is correct Value propagation is really slow.

Did we solve ladder?

Why is the model still strong? \rightarrow It plays alternative moves to avoid these situations.

Why MCTS is so important?

Look-ahead is how new knowledge is created.

On Final Model

White rollouts $2x \rightarrow ~85\%$ winrate

Black rollouts 2x \rightarrow ~65% winrate

Training is almost always constrained by model capacity (why 40b > 20b)

Principled Algorithm Guaranteed Performance Good Empirical Results

Joint Policy Search and Contract Bridge Bidding

Qucheng Gong

Tina Jiang

facebook Artificial Intelligence

[Y. Tian et al., Joint Policy Search for Collaborative Multi–agent Imperfect Information Game, NeurIPS 2020]

When Self-Play Fails?

Training with self-play + A2C get stuck in local minima

A unilateral change of policy doesn't improve co-operative communication (many single-agent DRL approach improves by unilateral changes of agent policy) facebook Artificial Intelligence

Another Illustrative Example (Imperfect Information)

One possible solution (6 symmetric solutions):

facebook Artif

Private card	Alice's Action	Bob's Action
₩ A	1	Guess 🎔 A
А	3	Guess A
	2	
cial Intelligence	ence Not used	

What if Allice and Bob never use signal 2,

but sending signal 2 has additional rewards?

Optimize Policies in Multiple Infosets

Dependency between policies

A change of $\sigma(I_1, a)$ affects **all** the reachability of down-stream states and/or infosets, no matter they are *active* or not.

A trajectory could re-enter into another active set and leave and re-enter again.

The value of an inactive infoset I_3 will change since the reachability to I_3 changes.

An infoset might contain both affected states and unaffected states.

Is there a good way to track value changes?

Optimize Policies in Multiple Infosets

Density
$$\rho^{\sigma,\sigma'}(h) = \pi^{\sigma'}(h) \left[\sum_{a \in A(I)} \sigma'(I,a) v^{\sigma}(ha) - v^{\sigma}(h)\right]$$

Two key properties:

(a) Its summation yields overall value changes

$$\bar{v}^{\sigma'} - \bar{v}^{\sigma} = \sum_{h \notin Z} \rho^{\sigma, \sigma'}(h)$$

facebook Artificial Intelligence

(b) For regions with the same policy, it vanishes even if the overall reachability changes.

Value Changes w.r.t Localized Policy Change

Theorem

Algorithm 1 Joint Policy Search (Tabular form)

1: function JSP-MAIN(σ) for $i = 1 \dots T$ do 2: Compute reachability π^{σ} and value v^{σ} under σ . Pick initial infoset I_1 . 3: $\sigma \leftarrow \text{JPS}(\sigma, \{I_1\}, 1).$ 4: end for 5: 6: end function 7: function JPS(σ , \mathcal{I}_{cand} , d) $\triangleright \mathcal{I}_{cand}$: candidate infosets if $d \geq D$ then 8: return 0. ▷ Search reaches maximal depth D 9: 10: end if for $I \in \mathcal{I}_{cand}$ and $h \in I$ do 11: Compute $\pi^{\sigma'}(h)$ by back-tracing $h' \sqsubset h$ until I(h') is active. Otherwise $\pi^{\sigma'}(h) = \pi^{\sigma}(h)$. 12: end for 13: Compute $J^{\sigma,\sigma'}(I) = \sum_{h \in I} \rho^{\sigma,\sigma'}(h)$ for each $I \in \mathcal{I}_{cand}$ using Eqn. 5. 14: for $I \in \mathcal{I}_{cand}$ and $a \in A(I)$ do 15: Set I active. Set $\sigma'(I)$ and reachability accordingly Eqn. 6. 16: Set $r(I, a) = JPS(\sigma, succ(I, a), d+1) + J^{\sigma, \sigma'}(I)$ 17: end for 18: return $\max(0, \max_{I,a} r(I, a))$ \triangleright Also consider if no infoset in \mathcal{I}_{cand} is active. 19: 20: end function

Results on Simple Games

Definition 1 (Simple Communication Game of length L). Consider a game where $s_1 \in \{0, ..., 2^L - 1\}$, $a_1 \in A_1 = \{0, 1\}$, $a_2 \in A_2 \in \{0, ..., 2^L - 1\}$. P1 sends one binary public signal for L times, then P2 guess P1's private s_1 . The reward $r = \mathbf{1}[s_1 = a_2]$ (i.e. 1 if guess right).

Results on Simple Games

Definition 2 (Simple Bidding Game of size N). P1 and P2 each dealt a private number $s_1, s_2 \sim$ Uniform $[0, \ldots, N-1]$. $\mathcal{A} = \{\text{Pass}, 2^0, \ldots, 2^k\}$ is an ordered set. The game alternates between P1 and P2, and P1 bids first. The bidding sequence is strictly increasing. The game ends if either player passes, and $r = 2^k$ if $s_1 + s_2 \ge 2^k$ where k is the latest bid. Otherwise the contract fails and r = 0.

Performance

	Comm (Def. 1)		Mini-Hanabi	Simple Bidding (Def. 2)			2SuitBridge (Def. 3)				
	L = 3	L=5	L = 6	L = 7	[15]	N = 4	N = 8	N = 16	N=3	N = 4	N = 5
CFR1k [43]	0.89^{*}	0.85	0.85	0.85	9.11*	2.18^{*}	4.96^{*}	10.47	1.01^{*}	1.62^{*}	2.60
CFR1k+JPS	1.00^{*}	1.00^{*}	1.00^{*}	1.00^{*}	9.50*	2.20^{*}	5.00^{*}	10.56^{*}	1.07^{*}	1.71^{*}	2.74^{*}
A2C [26]	0.60^{*}	0.57	0.51	0.02	8.20*	2.19	4.79	9.97	0.66	1.03	1.71
BAD [15]	1.00^{*}	0.88	0.50	0.29	9.47^{*}	2.23*	4.99^{*}	9.81	0.53	0.98	1.31
Best Known	1.00	1.00	1.00	1.00	10	2.25	5.06	10.75	1.13	1.84	2.89
#States	633	34785	270273	2129793	53	241	1985	16129	4081	25576	147421
#Infosets	129	2049	8193	32769	45	61	249	1009	1021	5116	24571

JPS can improve existing policies, and help it jump out of local optima

Contract Bridge

- 25 million US players
- **100** years of history
- Incomplete Information
- Collaborative + Competitive
- Large State Space (5.4*10²⁸)

Bridge Bidding

West	North	East	South
			1♠
2 ♠ ¹	2NT 2	Pass	3♠
Pass	4 ♣ ³	Pass	$4NT^4$
Pass	5 ≜ ⁵	Pass	7♠
Pass	Pass	Pass	

(1) Hearts and a minor. (2) Spade support, forcing to game. (3) Short clubs. (4) Keycard Blackwood. (5) Two key cards and the queen of spades, treating his fifth card as the equivalent of the queen.

Player only knows the private cards

Sequences of non-decreasing bids

The last bid is the contract

Fundamental Trade-off:

bid high via efficient communication, but not too much!

Evaluation against SoTA software (1000 games)

Methods	Vs. WBridge5 (IMPs/board)
Previous SoTA (Rong et al, 2019)	+ 0.25 (on 64 games)
Our A2C baseline	$+ 0.29 \pm 0.22$
1% JPS (2 days)	$+ 0.44 \pm 0.20$
5% JPS (2 days)	+ 0.37 ± 0.19
1% JPS (14 days)	+ 0.63 ± 0.20

WBridge5: Champions of computer bridge tournament in 2005, 2007, 2008, 2016-2018

Bidding Visualization

Opening bids	Ours	SAYC
1♣	10+ HCP	12+ HCP, 3+♣
$1\diamondsuit$	8-18 HCP, <4 ♡, <4 ♠	12+ HCP, 3+◊
$1\heartsuit$	4-16 HCP, 4-6♡	12+ HCP, 5+♡
$1 \spadesuit$	4-16 HCP, 4-6♠	12+ HCP, 5+
1NT	12-17 HCP, bal	15-17 HCP, bal
2	6-13 HCP, 5+♣	22+ HCP
$2\diamondsuit$	6-13 HCP, 5+◊	5-11 HCP, 6+◊
$2\heartsuit$	8-15 HCP, 5+♡	5-11 HCP, 6+♡
$2 \spadesuit$	8-15 HCP, 5+	5-11 HCP, 6+

Good Empirical Performance No theory yet

Learning Action Space in Monte Carlo Tree Search

Linnan Wang¹

Saining Xie²

Teng Li²

Rodrigo Fonseca¹

Yuandong Tian²

¹Brown University, ²Facebook AI Research

[L. Wang et al, Sample-Efficient Neural Architecture Search by Learning Action Space, arXiv]

[L. Wang et al, Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search, NeurIPS 2020]

What else can Monte Carlo Tree Search (MCTS) be used?

(Non-Convex) Optimization

Motivating Examples in Architecture Search

#samples

Depth = {1, 2, 3, 4, 5} Channels = {32, 64} KernelSize = {3x3, 5x5}

1364 networks.

Action space

Sequential = { add a layer, set K, set C }

Global = { Set depth, set all K, set all C }

Global is better!

Learn action space

Action 1="left"

(a) Search using current action space until a fixed #rollouts are used.

Approach

Monte Carlo Tree Search (MCTS)

Fixed action branches (but not action space)

Value sampled from the current subset of networks (E.g., from truth table)

(b) Train the action space.

Network Hyperparameters	Accuracy
(filter=2, depth=5)	85%
(filter=3, depth=7)	92%
(filter=3, depth=2)	30%

Performance

NASBench-101 (CIFAR-10, 420k models, NASNet Search Space)

Each curve is repeated 100 times. We randomly pick 2k models to initialize.

Customized dataset: ConvNet-60K (CIFAR-10, VGG style models)

Customized dataset: LSTM-10K (PTB)

	Model	Using ImageNet	Params	Top1 err	Μ	GPU days
Open Domain		search based	methods			
CIFAR-10 (NASNet style architecture)	NASNet-A+c/o [22] AmoebaNet-B+c/o [10] PNASNet-5 [29] NAO+c/o [30] AmoebaNet-B+c/o EfficientNet-B7 BiT-M LaNet+c/o LaNet+c/o	X X X X √ √ X X	3.3 M 2.8 M 3.2 M 128.0 M 34.9 M 64M 60M 3.2 M 44.1 M	$\begin{array}{c} \textbf{2.65} \\ \textbf{2.55}_{\pm 0.05} \\ \textbf{3.41}_{\pm 0.09} \\ \textbf{2.11} \\ \textbf{2.13}_{\pm 0.04} \\ \textbf{1.01} \\ \textbf{1.09} \\ \textbf{1.63}_{\pm 0.05} \\ \textbf{0.99}_{\pm 0.02} \end{array}$	20000 27000 1160 1000 27000 800	2000 3150 225 200 3150 150
	one-shot NAS based methods					
	ENAS+c/o [18] DARTS+c/o [20] BayesNAS+c/o [31] ASNG-NAS+c/o [32] XNAS+c/0 [33] oneshot-LaNet+c/o oneshot-LaNet+c/o	X X X X X X X	4.6 M 3.3 M 3.4 M 3.9 M 3.7 M 3.6 M 45.3 M	$\begin{array}{c} 2.89\\ 2.76_{\pm 0.09}\\ 2.81_{\pm 0.04}\\ 2.83_{\pm 0.14}\\ 1.81\\ 1.68_{\pm 0.06}\\ 1.2_{\pm 0.03}\end{array}$	- - - -	0.45 1.5 0.2 0.11 0.3 3 3

M: number of samples selected.

Open Domain

ImageNet	Model	FLOPs	Params	top1 / top5 err
(mobile setting	NASNet-A (Zoph et al. (2018))	564M	5.3 M	26.0 / 8.4
	NASNet-B (Zoph et al. (2018))	488M	5.3 M	27.2 / 8.7
FIOP < 6001VI)	NASNet-C (Zoph et al. (2018))	558M	4.9 M	27.5/9.0
	AmoebaNet-A (Real et al. (2018))	555M	5.1 M	25.5 / 8.0
	AmoebaNet-B (Real et al. (2018))	555M	5.3 M	26.0 / 8.5
	AmoebaNet-C (Real et al. (2018))	570M	6.4 M	24.3 / 7.6
	PNASNet-5 (Liu et al. (2018a))	588M	5.1 M	25.8 / 8.1
	DARTS (Liu et al. (2018b))	574M	4.7 M	26.7 / 8.7
	FBNet-C (Wu et al. (2018))	375M	5.5 M	25.1 / -
	RandWire-WS (Xie et al. (2019))	583M	5.6 M	25.3 / 7.8
	BayesNAS (Zhou et al. (2019))	-	3.9 M	26.5 / 8.9
	LaNet	570M	5.1 M	25.0 / 7.7

La-MCTS as a meta method

Optimizing linear policy for Mujoco tasks

TODO: A theory is needed ...

Principled framework Demystify existing work A theoretical framework that explains

- 1. Why self-supervised learning with deep ReLU models works
- 2. Why a good representation is learned without supervision
- 3. Why BYOL doesn't need negative samples

Understand Deep ReLU Models

Yuandong Tian

Lantao Yu

Xinlei Chen

Surya Ganguli

facebook Artificial Intelligence

[Y. Tian., Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension, ICML 2020] [Y. Tian et al., Understanding Self-supervised Learning with Dual Deep Networks, arXiv 2020]

Self-supervised Learning

Similarity with Teacher Student Setting

The mathematical framework is similar!

facebook Artificial Intelligence

[Y. Tian, Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension, ICML 2020]

Compare with Teacher-Student Setting

	Teacher-Student Setting	SimCLR Setting
Training Setup	Teacher is fixed and assumed to be optimal $\mathcal{W}^*.$	Teacher and student are both under training.
Loss function	L2 loss	Contrastive Loss
Data Augmentation	No	Yes (and critical)
Architectures	Same architecture for Teacher and Student	Same architecture for the two networks

InfoNCE

$$L(r_{+}, r_{1-}, r_{2-}, \dots, r_{K-}) := -\log \frac{e^{-r_{+}/\tau}}{e^{-r_{+}/\tau} + \sum_{k=1}^{H} e^{-r_{k-}/\tau}}$$

If |u| = |v| = 1, then the formulation is the same as SimCLR's formulation facebook Artificial Intelligence $-r = -|u - v|^2 = 2 \sin(u, v) - 2$

The Covariance Operator

Connection

$$K_l(\mathbf{x}) := \mathbf{f}_{l-1}(\mathbf{x}) \otimes J_l^{\mathsf{T}}(\mathbf{x})$$

 \otimes : Kronecker Product

Augment-Average Connection

 $\bar{K}_l(\mathbf{x}) := \mathbb{E}_{\mathbf{x}' \sim p_{\text{aug}}(\cdot | \mathbf{x})} [K_l(\mathbf{x}')]$

Weight Update for SimCLR at layer *I*:

$$W_l(t+1) = W_l(t) + \alpha \Delta W_l(t)$$

facebook Artificial Intelligence

Learning rate

Covariance operator (PSD)

$$\operatorname{vec}(\Delta W_l(t)) = \beta \mathbb{V}_{\boldsymbol{x}}[\bar{K}_l(\boldsymbol{x})] \operatorname{vec}(W_l(t))$$

Positive number related to Contrastive loss

What does it mean? The Covariance Operator $\mathbb{V}_{\mathbf{x}}[\bar{K}_l(\mathbf{x}; \mathcal{W}(t))]$

- Always PSD at any stage of training
- Weight at each layer undergoes a PSD transformation
- Strong eigen mode leads strong weight growth along that direction

What are the strong eigen models in the covariance operator? To understand that, we need a generative model of the data.

Using Generative Models to understand Covariance Operator

 z_0 : Class (sample) label faceb z'_k : Trif Nuisance Transformations given by Data Augmentation

One-layer one-neuron example

Two objects **11** and **101** translating in 1D space

$$\mathbb{V}_{z_0}\left[\bar{K}(z_0)\right] = \frac{1}{4d^2} \mathbf{u} \mathbf{u}^\mathsf{T}$$

$$\mathbf{u} := \mathbf{x}_{11} + \mathbf{x}_{00} - \mathbf{x}_{01} - \mathbf{x}_{10}$$

facebook Artificial Intelligence

Linear neuron: Nothing is learned.

ReLU neuron: Enforce what is initialized!

Feature to represent pattern 10

A two-layer example

Augment-Average Connection for both layers:

$$\bar{K}_1(z) = [w_{2,1}\mathbf{u}_1, \dots, w_{2,n_1}\mathbf{u}_{n_1}] \qquad \bar{K}_2(z) = [\mathbf{w}_{1,1}^\mathsf{T}\mathbf{u}_1, \dots, \mathbf{w}_{1,n_1}^\mathsf{T}\mathbf{u}_{n_1}]$$

where $\boldsymbol{u}_j(z) := \mathbb{E}_{z'|z} \left[\boldsymbol{x}(z, z') \mathbb{I}(\boldsymbol{w}_{1,j}^\mathsf{T}\boldsymbol{x}(z, z') \ge 0) \right]$

Theorem 4. If $\operatorname{Cov}_{z}[u_{j}, u_{k}] = 0$ for $j \neq k$, then the time derivative of $w_{2,j}$ and $w_{1,j}$ satisfies:

$$\dot{w}_{2,j} = w_{2,j} \boldsymbol{w}_{1,j}^{\mathsf{T}} A_j \boldsymbol{w}_{1,j}, \quad \dot{\boldsymbol{w}}_{1,j} = w_{2,j}^2 A_j \boldsymbol{w}_{1,j}, \quad \text{where } A_j := \mathbb{V}_z[\boldsymbol{u}_j(z)].$$

Hierarchical Latent Tree Models (HLTM)

[J. Grill et al, Bootstrap your own latent: A new approach to self-supervised Learning, arXiv]

BYOL Setting

	SimCLR Setting	BYOL Setting
Loss function	Contrastive Loss	(Normalized) L2 Loss
Architectures	Symmetric $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}$	Different Architectures $\mathcal{W} \neq \mathcal{W}'$. \mathcal{W} has an extra predictor (critical) \mathcal{W}' might has Exponential Moving Average (EMA)
BatchNorm in predictor/projector	Optional	Must have BN in predictor/projector (critical)

Why BYOL doesn't need contrastive loss?

Why BYOL needs an extra predictor?

Why BYOL needs to have BN in predictor/projector to work? facebook Artificial Intelligence

BYOL Setting (Top-1 Performance in STL-10)

Using Predictor is critical

-EMABNEMA, BN
$$38.7 \pm 0.6$$
 39.3 ± 0.9 33.0 ± 0.3 32.8 ± 0.5

How to analyze BatchNorm?

Zero-mean property.

After BN, Backpropagated Gradient is zero-mean in each minibatch:

$$\tilde{\boldsymbol{g}}_{l}^{i} := \boldsymbol{g}_{l}^{i} - \frac{1}{|B|} \sum_{i \in B} \boldsymbol{g}_{l}^{i} = \boldsymbol{g}_{l}^{i} - \bar{\boldsymbol{g}}_{l}$$

Zero-mean Gradient matters.

Ablation Study of Batch components

$$\begin{array}{|c|c|c|c|c|}\hline & - & \mu & \sigma & \mu, \sigma & \mu^{\text{H}} \\ \hline 43.9 \pm 4.2 & 64.8 \pm 0.6 & 72.2 \pm 0.9 & \textbf{78.1} \pm 0.3 & \textbf{44.2} \pm 7.0 \\ \hline \sigma^{\text{H}} & \mu^{\text{H}}, \sigma & \mu, \sigma^{\text{H}} & \mu^{\text{H}}, \sigma^{\text{H}} \\ \hline 54.2 \pm 0.6 & \textbf{48.3} \pm 2.7 & 76.3 \pm 0.4 & \textbf{47.0} \pm 8.1 \\ \hline \mu & \textbf{x} = \textbf{x} - \textbf{x}.\text{mean}(0) & \mu^{\text{H}} & \textbf{x} = \textbf{x} - \textbf{x}.\text{mean}(0).\text{detach}() \\ \sigma & \textbf{x} = \textbf{x} / \textbf{x}.\text{std}(0) & \sigma^{\text{H}} & \textbf{x} = \textbf{x} / \textbf{x}.\text{std}(0).\text{detach}() \end{array}$$

Explanation with the Framework

$$\operatorname{vec}(\Delta W_{l}) = \operatorname{vec}(\Delta W_{l})_{\operatorname{sym}} \qquad \qquad \operatorname{Without BN or} \mathcal{W} = \mathcal{W}' \\ - \mathbb{E}_{\boldsymbol{x}} \left\{ \bar{K}_{l}(\boldsymbol{x}) \left[\bar{K}_{l}^{\mathsf{T}}(\boldsymbol{x}) \operatorname{vec}(W_{l}) - \bar{K}_{l}^{\mathsf{T}}(\boldsymbol{x}; \mathcal{W}') \operatorname{vec}(W_{l}') \right] \right\}$$

*Some assumption is need to get to here, see paper for the details.

 $ext{tacebook A} = -\mathbb{E}_{oldsymbol{x}'} \{ \mathbb{V}_{oldsymbol{x}'}[K_l(oldsymbol{x}')] \} \operatorname{vec}(W_l)$

Why BatchNorm and Predictor matters

$$-\mathbb{V}_{\boldsymbol{x}}\left[\bar{K}_{l}(\boldsymbol{x};\mathcal{W})\right]\operatorname{vec}(W_{l})+\operatorname{Cov}_{\boldsymbol{x}}\left[\bar{K}_{l}(\boldsymbol{x};\mathcal{W}),\bar{K}_{l}(\boldsymbol{x};\mathcal{W}')\right]\operatorname{vec}(W_{l}')$$

Negated covariance operator

Approximate covariance operator

Small when there is a predictor in ${\mathcal W}$ with small Jacobian

Reinitializing Predictors Works

Table 5: Top-1 performance of BYOL using reinitialization of the predictor every T epochs.Original BYOLReInit T = 5ReInit T = 10ReInit T = 20STL-10 (100 epochs)78.178.6**79.1**79.0ImageNet (60 epochs)60.961.9**62.462.4**

The predictor is not necessarily "optimal" as suggested in the original BYOL paper.

Homework

- What's the best mass ratio in Black powder?
- Is that possible to enumerate all possible states in a game like Go?
- How does AlphaZero work? Does AlphaZero use human knowledge?
- Explain how Monte Carlo Tree Search works?
- Explain how Alpha Beta Pruning works?
- Why do we want to open the black-box for deep models?

Thanks!