
Stronger Together: Marrying Deep Models
with Traditional Symbolic Decision-Making

Yuandong Tian
Research Scientist

Meta AI (FAIR)

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

Reasoning / Planning as Optimization Problems

Reasoning Planning

Optimal
choice

Problem
description

𝒙∗ = argmax
𝒙∈$

𝑓(𝒙; 𝒚)

Do not re-invent the wheel…

SCIP

2/10

2/10

1/1

21/31

11/19

10/11

10/12

1/8

23/41

1/1

Combinatorial Solvers Search/planning techniques

Overview

Deep Models

Solver

Deep Models

Solver

Initial
solution

End2end

Deep Models

Solver

Provide
data

Part I: Provide Initial solutions from Model to Solvers

Jailbreaking an LLM

𝒙: Input prompt
𝒒: Suffix to be found
𝒚: Target (jailbroken) output (e.g., “Sure….”)

Question: How to optimize this combinatorial optimization problem?

Given (𝒙, 𝒒), likelihood for
the targetLLM to generate 𝒚

Make sure the suffix 𝒒 is
human-readable using baseLLM

AdvPrompter

Given the prompt (malicious instruction),
AdvPrompter generates its suffix so that the combined instruction breaks a fixed targetLLM

[A. Paulus*, A. Zharmagambetov* et al, AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs, arXiv’24]

AdvPrompter versus Existing Methods

Two-stage optimization

𝒒-step (Finding adversarial prompts 𝒒 to minimize the loss)

𝜃-step (Fine-tune AdvPrompter 𝜃 to generate 𝒒)

How to optimize adversarial prompts 𝒒?

• Combinatorial optimization problem!
• Instead of finding the best prompts, we do autoregressive sampling!

Candidate set

Finding the next token
(Greedy)

AdvPrompter

(Beam sampling)

Experimental Results
ASR@1: Attack success rate in 1 trial
ASR@10: Attack success rate over 10 trials

Experimental Results
Fix LLM (LLama2-7b)

Experimental Results

Warm start: Additional steps before running iterative algorithms

Examples prompt

suffix

False negative in keyword matching, but detected by LLM-based evaluator

Transfer Attack

More Robustness using data from AdvPrompter

Part II: Better Transformers with Data from Solvers

What LLMs cannot do well yet?

Travel planning

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]

What LLMs cannot do well yet?

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]

Using SoTA LLMs for Travel Planning (not great)

First tool use,
Then plan the travel

Ground-truth tool use,
Then plan the travel

Even SoTA LLMs struggle for such hard planning problems

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]

Can LLM solve Tic-tac-toc?

Claude 3 Opus

Hard to find solutions that satisfy all the constraints

Tasks

Sokoban（倉庫番）Maze Navigation

Planning and Sequential Decision Making
<prompt> <plan> (Task Solution)
bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

bos
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step

Wall

[L. Lehnert et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, arXiv’24]

Computing a Plan with A* Search

0 1 2

Start

Goal
Plan step
Frontier state
Closed state

2

1

0
A* computes a plan by manipulating two sets.

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Computing a Plan with A* Search
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Get optimal path from the search dynamics

Imitating A* Search as a Token Prediction Task
<trace><plan>
bos
create 0 2 c0 c3
close 0 2 c0 c3
create 0 1 c1 c2
close 0 1 c1 c2
create 0 0 c2 c1
create 1 1 c2 c1
close 0 0 c2 c1
create 1 0 c3 c0
close 1 0 c3 c0
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall <prompt>
bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

{<prompt><plan>} {<prompt><trace><plan>}Dataset

Solution-Only Model Search-Augmented ModelModel

Training Transformers to Solve Planning Tasks

Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)

50k 100k 500k 1M

0

20

40

60

80

100

Search Augmented, 15M

Search Augmented, 46M

Search Augmented, 175M

Solution Only, 175M

Number of Training Sequences

C
or

re
ct

ly
 S

ol
ve

d
Te

st
 T

as
ks

 [i
n

%
]

Search-Augmented vs. Solution-Only Models

50k 100k 500k 1M

0

20

40

60

80

100

Search Augmented, 15M

Search Augmented, 46M

Search Augmented, 175M

Solution Only, 175M

Number of Training Sequences

C
or

re
ct

ly
 S

ol
ve

d
Te

st
 T

as
ks

 [i
n

%
]

Search-Augmented vs. Solution-Only Models

Search-augmented is much
more parameter & data efficient!

30x30 Maze Tasks

Sokoban Experiments

46M 175M 747M
84
86
88
90
92
94
96

Search Augmented

Solution Only

Model Parameters
O

pt
im

al
ly

 S
ol

ve
d

Te
st

 T
as

ks
 [i

n
%

]
This animation was composed using image icons from
https://github.com/morenod/sokoban (accessed 2023-11-21).

How to go beyond?

Imitation
Learning Fine-tuning

Using solver’s trace to train the
Transformer with teacher forcing

Fine-tune the model to achieve shorter
trace but still leads to optimal plan!

(Reinforcement Learning task)

Search-augmented Models Searchformer

Search
Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
1

S
te

p
2

S
te

p
3

Beyond A*: Improving
search dynamics via
bootstrapping

Search
Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
1

S
te

p
2

S
te

p
3

Beyond A*: Improving
search dynamics via
bootstrapping

Search
Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
1

S
te

p
2

S
te

p
3

Beyond A*: Improving
search dynamics via
bootstrapping

Search
Augmented

A*

Searchformer

A*

Searchformer

A*

0 5000 10000

Searchformer

A*

Sequence Length Averaged per Test Task

S
te

p
1

S
te

p
2

S
te

p
3

Beyond A*: Improving
search dynamics via
bootstrapping

Improving search dynamics via bootstrapping

Fine-tuning
improves
performance
initially.

Improving search dynamics via bootstrapping

Searchformer
outperforms largest
solution-only model.

Improving search dynamics via bootstrapping

Repeated bootstrapping increases the
Improved Length Ratio (ILR)

Improving search dynamics via bootstrapping

Part III: Train Deep Models with Solvers

Nonlinear objective with combinatorial constraints

• Real-world domains:
• Computer system planning
• Designing photonic devices
• Throughput optimization
• Antenna design
• Energy grid

Nonlinear + differentiable
objective 𝑓(𝒙)

Combinatorial
feasible region

Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚'
• Device 𝑗 has memory capacity 𝑀(

Find
• Allocation of tables to devices observing device memory limits
• Minimize latency which is estimated by a neural network (capturing nonlinear

interactions)

Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚'
• Device 𝑗 has memory capacity 𝑀(

Min!	𝑳 {𝑥"#} s.t. ∑# 𝑥#$𝑚# ≤ 𝑀$, 	 ∑$ 𝑥#$ = 1 , 	 𝑥#$ ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear
problem

Originally Now

min
𝒙
𝑓(𝒙; 𝒚)

s. t 	𝒙 ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 	𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ (= argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes)(!; %) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Originally Now

Challenge: how to find the right objective?
[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23
and outstanding paper in SODS workshop]

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ (= argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes)(!; %) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Originally Now

Proposal: gradient-based optimization
[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23
and outstanding paper in SODS workshop]

Proposal: surrogate learning

• Use surrogate MILP to solve original problem
• Find linear coefficients c such that argmin

%∈'
𝑓(𝑥) = argmin

%∈'
𝑐(𝑥	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23
and outstanding paper in SODS workshop]

SurCo-zero: gradient-based optimization

• Iterative solver based on linear surrogate guided by gradient updates
• Update linear coefficients 𝑐 such that 𝑥∗ 𝑐 improves objective 𝑓 𝑥∗(𝑐)

∇"𝑓(𝑥)∇&𝑥∗(𝑐)
Assumed differentiableRecent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

SurCo-prior: distributional learning

• One pass solver based on model learned offline
• Use neural model based on problem features to predict linear coefficients

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate Coefficients
𝑐

∇"𝑓(𝑥)
Assumed differentiable

∇&𝑥∗(𝑐)
Recent work on differentiable optimization
 Differentation of blackbox optimizers
 CVXPYLayers
 MIPaaL
 ... more in related work

Neural Network
𝑐 = 𝑁𝑁 𝑦; 𝜃

𝜃
Model parameters

Problem features
𝑦

∇'𝑁𝑁 𝑦; 𝜃
Standard NN autograd
 Pytorch
 Tensorflow
 JAX etc…

SurCo-prior: distributional learning

• Update neural network parameters from training dataset

Train Model
parameters 𝜽

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)	

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

SurCo-hybrid: fine-tuning
 from trained model
Update neural network parameters
from training dataset Fine-tune surrogate on-the-fly

Train Model
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

SurCo-zero

No offline training data, just solve a single problem instance on-the-fly

∇"𝑓(𝑥)∇&𝑥∗(𝑐)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

SurCo-prior

Uses offline training data to quickly solve problems at test time with just one solver call

Train Model
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)	

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

SurCo-hybrid

Offline train + on-the-fly fine-tuning the surrogate

Train Model
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Embedding Table Sharding
Used in large-scale deep learning systems: recommendation systems, knowledge graph

Place N “tables” (with known memory need 𝑚%) on K devices (𝑥%& = 1: table 𝑖 assigned to device 𝑗)

 Min;	𝐿 {𝑥'(} s.t. ∑' 𝑥'(𝑚' ≤ 𝑀(, 	 ∑(𝑥'(= 1 , 	 𝑥'(∈ {0,1}

𝐿	: Runtime bottleneck f(x) estimated by NN (longest-running device)

𝐿 is nonlinear due to system issues
(e.g., batching, communication, etc.)

c 𝑦; 𝜃 gives surrogate ”per-table cost” 𝑐+,
(and ∑+, 𝑐+,𝑥+, is the surrogate latency objective)

Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy
• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets

https://github.com/facebookresearch/dlrm_datasets

Results – Table Sharding

Inverse Photonic Design

• Design physically-viable devices that take light waves and routes
different wavelengths to correct locations

• Device design misspecification loss f(x) computed by differentiable
electromagnetic simulator

• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)
• x = ~binary_opening(~x, brush)

Inverse Photonic Design

• Dataset: Ceviche Challenges1
• Most baselines don’t work here due to combinatorial constraints
• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation2 of brush
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges

Results – Inverse Photonics

Inverse photonics Convergence comparison +
Solution example

0 25 50 75 100 125 150 175 200

Step

0.0

0.2

0.4

0.6

0.8

1.0

D
es

ig
n

M
is

sp
ec

ifi
ca

ti
on

Inverse Photonics Loss Convergence

Method
Pass-Through

SurCo-zero

SurCo-hybrid

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer

Conclusion

• Handle industrial applications with differentiable optimization

• High-quality solutions to combinatorial nonlinear optimization by
finding linear surrogates

• Sometimes we can find “easier” surrogate problems that solve much more
difficult instances

• SurCo works in several data settings
• Zero-shot vs Offline training
• One step inference vs fine-tuning

• Requires ∇%𝑓(𝑥)à Does not applicable with “black-box” functions
• Requires ∇7𝒈𝜽(𝑐)à Solver is backpropagatable

[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurIPS’23]

Limitation of SurCo
Recall SurCo: Update linear coefficients 𝒄 such that 𝑥∗(𝒄) improves objective 𝑓(𝑥∗ 𝒄)

Using Surrogate Models ℳ
• LANCER: Learn a landscape surrogate ℳ that approximates 𝑓 ∘ 𝒈 and

minimize ℳ instead.
• f and g may not be differentiable, but ℳis differentiable

How to learn surrogate loss ℳ?

Good approximation only around optimal 𝜃

Task: Markowitz’ portfolio selection problem but more complex objective and some
variables are forced to be discrete. This is mixed-integer nonlinear program (MINLP).
Dataset: Historical data on market prices from QuandlWIKI [2].

Experiments: Portfolio optimization

Generating Diverse Solutions

For design problems, we want to have diverse solutions that optimize
the nonlinear objective with combinatorial constraints.

Where 𝒳 = {𝑥(} are a set of solutions.

Group loss Combinatorial
solver

Generative models
in the latent spaceIndividual loss

[A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]

Example Tasks

Game level designWarcraft map generation Inverse photonics

Results on Game Level Design

GAN + MILP

GenCo
+ fixed Adv

GenCo
+ updated Adv

Numerical Performance

Inverse Photonics Design

Game Level Design

Constraints are
strictly satisfied

Thanks!

85

