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Reasoning / Planning as Optimization Problems

Reasoning Planning

Optimal 
choice

Problem 
description

𝒙∗ = argmax
𝒙∈$

𝑓(𝒙; 𝒚)



Do not re-invent the wheel…
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Part I: Provide Initial solutions from Model to Solvers



Jailbreaking an LLM

𝒙: Input prompt
𝒒: Suffix to be found
𝒚: Target (jailbroken) output (e.g., “Sure….”)

Question: How to optimize this combinatorial optimization problem?

Given (𝒙, 𝒒), likelihood for 
the targetLLM to generate 𝒚 

Make sure the suffix 𝒒 is 
human-readable using baseLLM



AdvPrompter

Given the prompt (malicious instruction), 
AdvPrompter generates its suffix so that the combined instruction breaks a fixed targetLLM  

[A. Paulus*, A. Zharmagambetov* et al, AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs, arXiv’24]



AdvPrompter versus Existing Methods



Two-stage optimization

𝒒-step (Finding adversarial prompts 𝒒 to minimize the loss)

𝜃-step (Fine-tune AdvPrompter 𝜃 to generate 𝒒) 



How to optimize adversarial prompts 𝒒?

• Combinatorial optimization problem!
• Instead of finding the best prompts, we do autoregressive sampling!

Candidate set 

Finding the next token
(Greedy)

AdvPrompter

(Beam sampling)



Experimental Results
ASR@1: Attack success rate in 1 trial 
ASR@10: Attack success rate over 10 trials



Experimental Results
Fix LLM (LLama2-7b)



Experimental Results

Warm start: Additional steps before running iterative algorithms



Examples prompt

suffix

False negative in keyword matching, but detected by LLM-based evaluator



Transfer Attack



More Robustness using data from AdvPrompter



Part II: Better Transformers with Data from Solvers 



What LLMs cannot do well yet?

Travel planning

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]



What LLMs cannot do well yet?

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]



Using SoTA LLMs for Travel Planning (not great)

First tool use, 
Then plan the travel 

Ground-truth tool use, 
Then plan the travel 

Even SoTA LLMs struggle for such hard planning problems

[J. Xie et al, TravelPlanner: A Benchmark for Real-World Planning with Language Agents, ICML’24]



Can LLM solve Tic-tac-toc?

Claude 3 Opus



Hard to find solutions that satisfy all the constraints



Tasks

Sokoban（倉庫番）Maze Navigation



Planning and Sequential Decision Making
<prompt> <plan> (Task Solution)
bos
start 0 2
goal  1 0
wall  1 2
wall  2 0
eos

bos
plan 0 2
plan 0 1
plan 0 0
plan 1 0
eos
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[L. Lehnert et al, Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping, arXiv’24]



Computing a Plan with A* Search

0 1 2
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Goal
Plan step
Frontier state
Closed state

2

1

0
A* computes a plan by manipulating two sets.

Wall



Computing a Plan with A* Search
<trace><plan>
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Computing a Plan with A* Search
<trace><plan>
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close  0 2 c0 c3 
create 0 1 c1 c2 
close  0 1 c1 c2 
create 0 0 c2 c1 
create 1 1 c2 c1 
close  0 0 c2 c1 
create 1 0 c3 c0 
close  1 0 c3 c0 
plan   0 2 
plan   0 1 
plan   0 0 
plan   1 0
eos

0 1 2

2

1

0

Start

Goal
Plan step
Frontier state
Closed state

Wall

Get optimal path from the search dynamics 



Imitating A* Search as a Token Prediction Task
<trace><plan>
bos
create 0 2 c0 c3 
close  0 2 c0 c3 
create 0 1 c1 c2 
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{<prompt><plan>} {<prompt><trace><plan>}Dataset

Solution-Only Model Search-Augmented ModelModel

Training Transformers to Solve Planning Tasks



Train a Transformer to predict the next token via teacher forcing.

Training Method

Encoder

<prompt> <trace><plan>

DecoderEncoder

<prompt> <plan>

Decoder

Solution-Only Model Search-Augmented ModelModel

(100-400 tokens) (100-6500 tokens)
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Search-Augmented vs. Solution-Only Models
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Search-Augmented vs. Solution-Only Models

Search-augmented is much 
more parameter & data efficient!

30x30 Maze Tasks



Sokoban Experiments
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This animation was composed using image icons from 
https://github.com/morenod/sokoban (accessed 2023-11-21).



How to go beyond?

Imitation 
Learning Fine-tuning

Using solver’s trace to train the 
Transformer with teacher forcing

Fine-tune the model to achieve shorter 
trace but still leads to optimal plan!

(Reinforcement Learning task)

Search-augmented Models Searchformer
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Improving search dynamics via bootstrapping



Fine-tuning 
improves 
performance 
initially.

Improving search dynamics via bootstrapping



Searchformer 
outperforms largest 
solution-only model.

Improving search dynamics via bootstrapping



Repeated bootstrapping increases the 
Improved Length Ratio (ILR)

Improving search dynamics via bootstrapping



Part III: Train Deep Models with Solvers



Nonlinear objective with combinatorial constraints

• Real-world domains:
• Computer system planning
• Designing photonic devices
• Throughput optimization
• Antenna design
• Energy grid

Nonlinear + differentiable 
objective 𝑓(𝒙)

Combinatorial 
feasible region



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚'
• Device 𝑗 has memory capacity 𝑀(

Find
• Allocation of tables to devices observing device memory limits
• Minimize latency which is estimated by a neural network (capturing nonlinear 

interactions)



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚'
• Device 𝑗 has memory capacity 𝑀(

Min!	𝑳 {𝑥"#}  s.t. ∑# 𝑥#$𝑚# ≤ 𝑀$ , 	 ∑$ 𝑥#$ = 1 , 	 𝑥#$ ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

Originally Now

min
𝒙
𝑓(𝒙; 𝒚)

s. t 	𝒙 ∈ Ω =

Nonlinear optimization with 
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 	𝒙 ∈ Ω

𝒙∗ 𝒚  optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ ( = argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes )(!; %) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Originally Now

Challenge: how to find the right objective?
[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 
and outstanding paper in SODS workshop]



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ ( = argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes )(!; %) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Originally Now

Proposal: gradient-based optimization
[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 
and outstanding paper in SODS workshop]



Proposal: surrogate learning

• Use surrogate MILP to solve original problem
• Find linear coefficients c such that argmin

%∈'
𝑓(𝑥) = argmin

%∈'
𝑐(𝑥	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐

[A. Ferber et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems, ICML’23 
and outstanding paper in SODS workshop]



SurCo-zero: gradient-based optimization

• Iterative solver based on linear surrogate guided by gradient updates
• Update linear coefficients 𝑐 such that 𝑥∗ 𝑐  improves objective 𝑓 𝑥∗(𝑐)

∇"𝑓(𝑥)∇&𝑥∗(𝑐)
Assumed differentiableRecent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior: distributional learning

• One pass solver based on model learned offline
• Use neural model based on problem features to predict linear coefficients

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate Coefficients
𝑐

∇"𝑓(𝑥)
Assumed differentiable

∇&𝑥∗(𝑐)
Recent work on differentiable optimization
             Differentation of blackbox optimizers
             CVXPYLayers
             MIPaaL
             ... more in related work

Neural Network
𝑐 = 𝑁𝑁 𝑦; 𝜃

𝜃
Model parameters

Problem features
𝑦

∇'𝑁𝑁 𝑦; 𝜃
Standard NN autograd
        Pytorch
        Tensorflow
         JAX etc…



SurCo-prior: distributional learning

• Update neural network parameters from training dataset

Train Model 
parameters 𝜽

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)	

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥



SurCo-hybrid: fine-tuning 
                         from trained model
Update neural network parameters 
from training dataset Fine-tune surrogate on-the-fly

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗



SurCo-zero

No offline training data, just solve a single problem instance on-the-fly

∇"𝑓(𝑥)∇&𝑥∗(𝑐)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior

Uses offline training data to quickly solve problems at test time with just one solver call

Train Model 
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)	

𝑐+ = 𝑁𝑁 𝑦+; 𝜃



SurCo-hybrid

Offline train + on-the-fly fine-tuning the surrogate

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)	

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗



Embedding Table Sharding
Used in large-scale deep learning systems: recommendation systems, knowledge graph

Place N “tables” (with known memory need 𝑚%) on K devices (𝑥%& = 1: table 𝑖 assigned to device 𝑗)

               Min;	𝐿 {𝑥'(}  s.t. ∑' 𝑥'(𝑚' ≤ 𝑀(, 	 ∑( 𝑥'( = 1 , 	 𝑥'( ∈ {0,1}

𝐿	: Runtime bottleneck f(x) estimated by NN (longest-running device)

𝐿 is nonlinear due to system issues 
(e.g., batching, communication, etc.)

c 𝑦; 𝜃  gives surrogate ”per-table cost” 𝑐+, 
(and ∑+, 𝑐+,𝑥+, is the surrogate latency objective)



Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing 
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy
• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP 
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets 

https://github.com/facebookresearch/dlrm_datasets


Results – Table Sharding



Inverse Photonic Design

• Design physically-viable devices that take light waves and routes 
different wavelengths to correct locations

• Device design misspecification loss f(x) computed by differentiable 
electromagnetic simulator

• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)
• x = ~binary_opening(~x, brush)



Inverse Photonic Design

• Dataset: Ceviche Challenges1 
• Most baselines don’t work here due to combinatorial constraints
• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation2 of brush 
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges


Results – Inverse Photonics



Inverse photonics Convergence comparison + 
Solution example
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Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer



Conclusion

• Handle industrial applications with differentiable optimization

• High-quality solutions to combinatorial nonlinear optimization by 
finding linear surrogates

• Sometimes we can find “easier” surrogate problems that solve much more 
difficult instances

• SurCo works in several data settings
• Zero-shot vs Offline training
• One step inference vs fine-tuning



• Requires ∇%𝑓(𝑥)à Does not applicable with “black-box” functions 
• Requires ∇7𝒈𝜽(𝑐)à Solver is backpropagatable

[A. Zharmagambetov et al, Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information, NeurIPS’23]

Limitation of SurCo
Recall SurCo: Update linear coefficients 𝒄 such that 𝑥∗(𝒄) improves objective 𝑓(𝑥∗ 𝒄 )  



Using Surrogate Models ℳ
• LANCER: Learn a landscape surrogate ℳ that approximates 𝑓 ∘ 𝒈 and 

minimize ℳ instead.
• f and g may not be differentiable, but ℳis differentiable 



How to learn surrogate loss ℳ? 

Good approximation only around optimal 𝜃



Task: Markowitz’ portfolio selection problem but more complex objective and some 
variables are forced to be discrete. This is mixed-integer nonlinear program (MINLP). 
Dataset: Historical data on market prices from QuandlWIKI [2].

Experiments: Portfolio optimization



Generating Diverse Solutions

For design problems, we want to have diverse solutions that optimize 
the nonlinear objective with combinatorial constraints.  

Where 𝒳 = {𝑥(} are a set of solutions.

Group loss Combinatorial 
solver

Generative models 
in the latent spaceIndividual loss

[A. Ferber et al, GenCO: Generating Diverse Solutions to Design Problems with Combinatorial Nature, ICML’24]



Example Tasks

Game level designWarcraft map generation Inverse photonics



Results on Game Level Design

GAN + MILP

GenCo 
+ fixed Adv

GenCo 
+ updated Adv



Numerical Performance

Inverse Photonics Design

Game Level Design

Constraints are 
strictly satisfied 



Thanks!
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