Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer

Yuandong Tian¹ Yiping Wang^{2,4} Beidi Chen^{1,3} Simon Du²

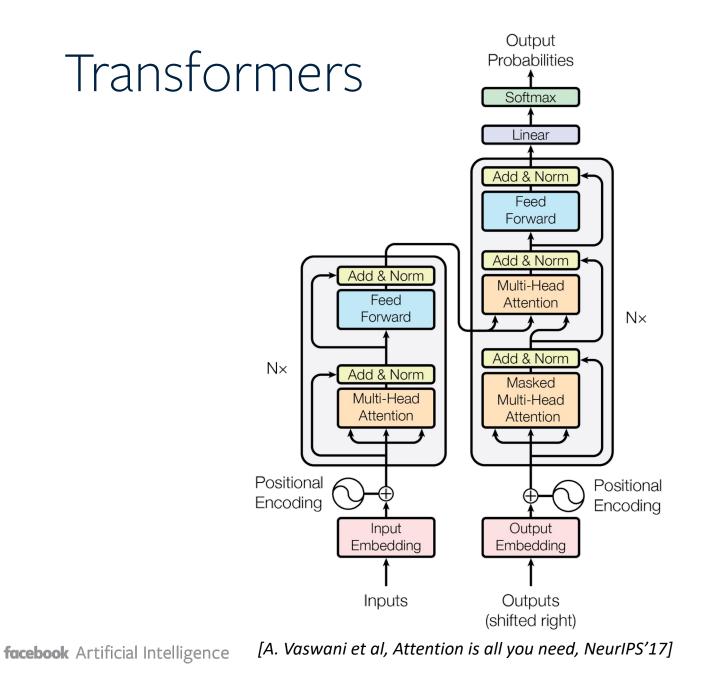
¹Meta AI (FAIR)

²University of Washington

³Carnegie Mellon University

⁴Zhejiang University

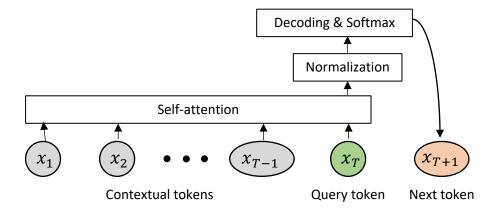
Carnegie Mellon University

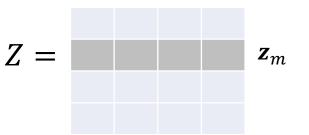


Why it works?

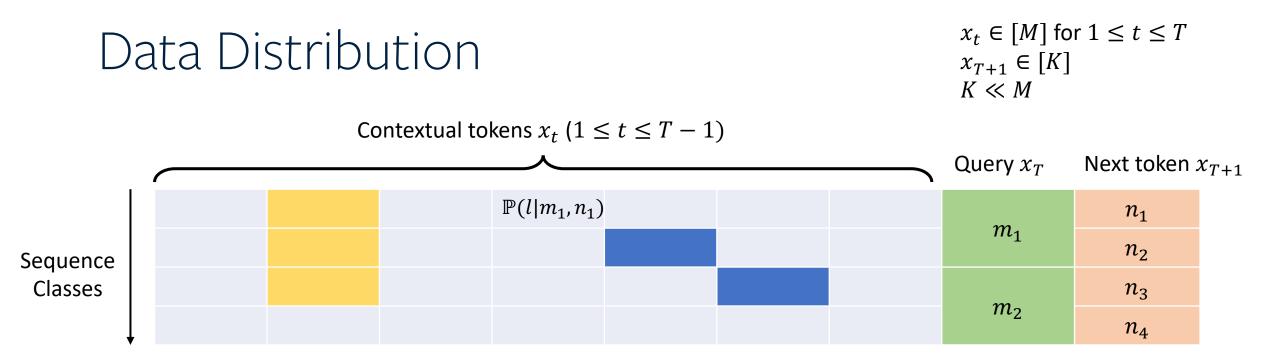
Problem Settings

- Reparameterization
 - $Y = UW_V^T U^T$
 - $Z = UW_Q W_K^T U^T$ (pairwise logits of self-attention matrix)
- Assumptions
 - No positional encoding
 - Sequence length $T \to +\infty$
 - Learning rate of decoder Y larger than self-attn layer Z ($\eta_Y \gg \eta_Z$)
- Other technical assumptions





 z_m : All logits of the contextual tokens when attending to last token $x_T = m$



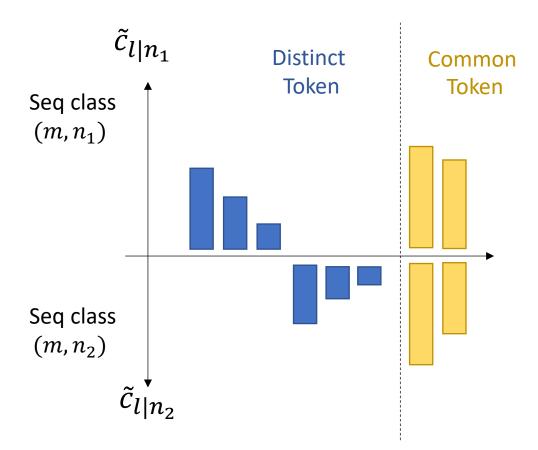
Distinct tokens: There exists unique n so that $\mathbb{P}(l|n) > 0$ **Common tokens:** There exists multiple n so that $\mathbb{P}(l|n) > 0$

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token l given last token $x_T = m$ and $x_{T+1} = n$

Assumption: $m = \psi(n)$, i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?

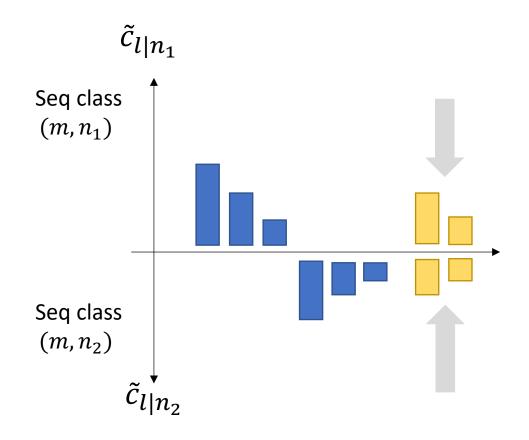
At initialization



Co-occurrence probability $\tilde{c}_{l|n_1} := \mathbb{P}(l|m, n_1) \exp(z_{ml})$

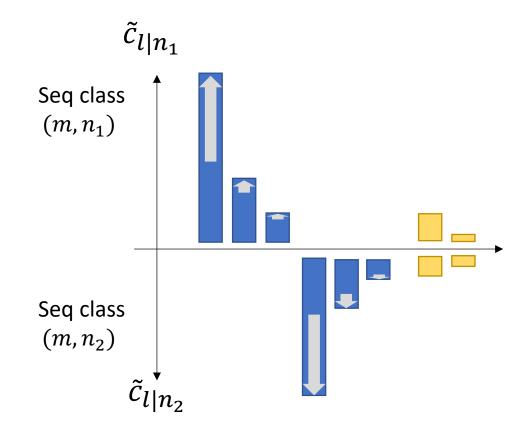
Initial condition: $z_{ml}(0) = 0$

Common Token Suppression



(a) $\dot{z_{ml}} < 0$, for common token l

Winners-emergence

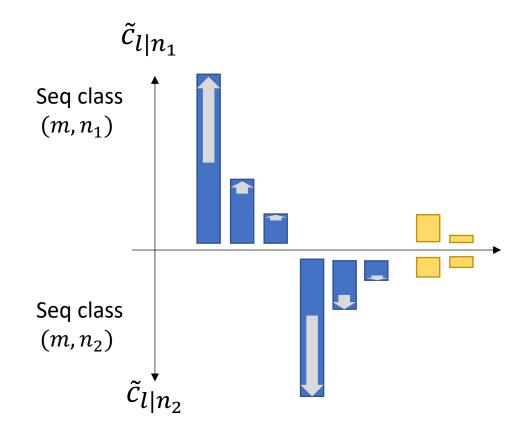


(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

Learnable TF-IDF (Term Frequency, Inverse Document Frequency)

Winners-emergence

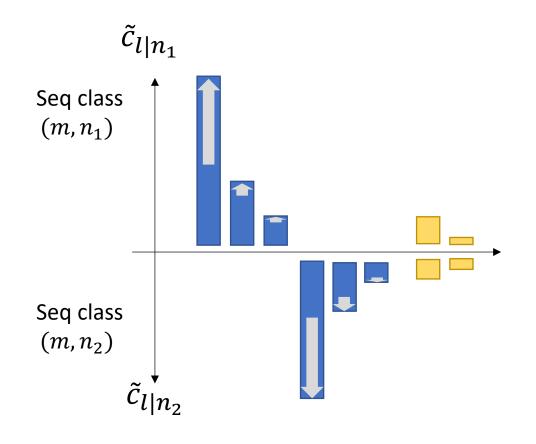


(a) $\dot{z_{ml}} < 0$, for common token l

(b) $\dot{z_{ml}} > 0$, for distinct token l

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Winners-emergence



(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Winners-emergence Contextual $\tilde{c}_{l|n_1}$ **Sparsity** (query-dependent) Seq class (m, n_1) Seq class (m, n_2)

(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m, n)$

Theorem 3 Relative gain $r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$ has a close form:

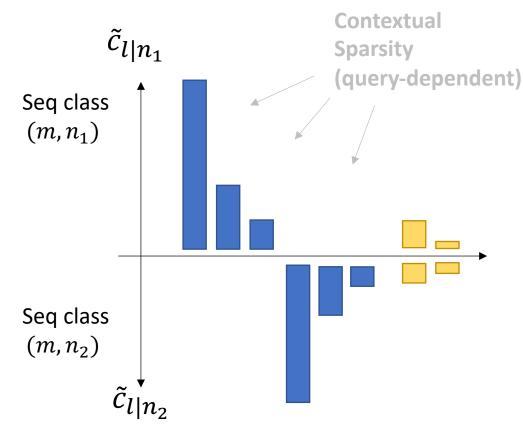
$$r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ monotonously increases, $B_n(0) = 0$

Attention frozen



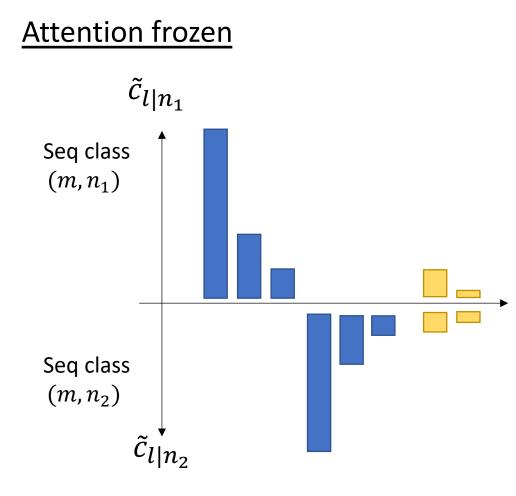
Theorem 4 When $t \to +\infty$, $B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$ **Attention scanning:** When training starts, $B_n(t) = O(\ln t)$

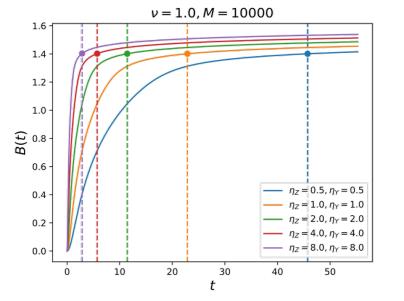
Attention **snapping**:

When
$$t \ge t_0 = O\left(\frac{2K \ln M}{\eta_Y}\right)$$
, $B_n(t) = O(\ln \ln t)$

(1) η_z and η_Y are large, $B_n(t)$ is large and attention is sparse

(2) Fixing η_z , large η_Y leads to slightly small $B_n(t)$ and denser attention





Larger learning rate η_z leads to faster phase transition

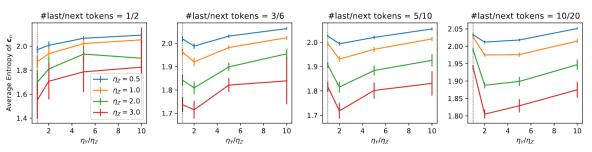
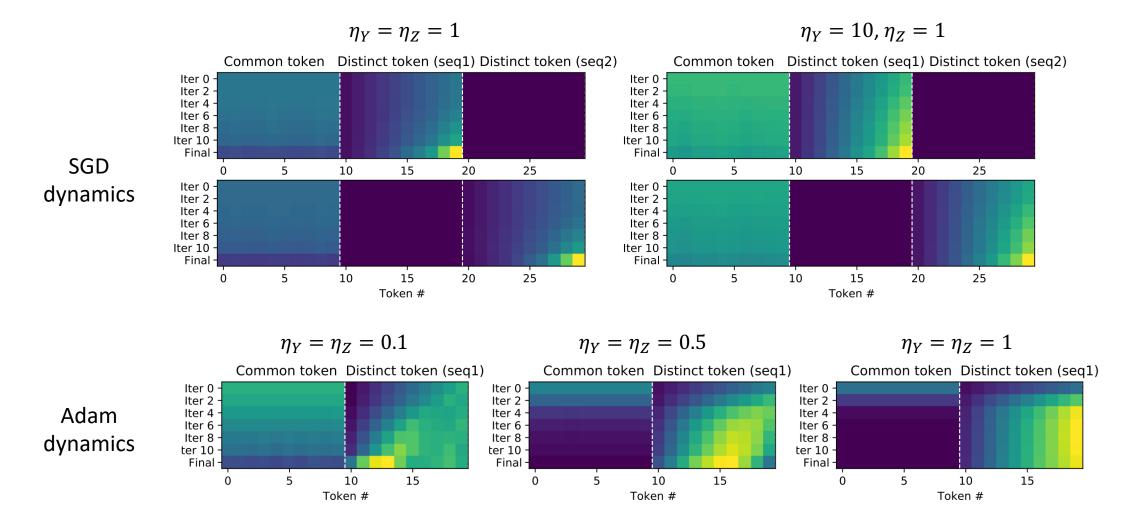


Figure 6: Average entropy of c_n (Eqn. [3]) on distinct tokens versus learning rate ratio η_Y/η_Z with more last tokens M/next tokens K. We report mean values over 10 seeds and standard derivation of the mean.

Visualization of c_n



Simple Real-world Experiments

WikiText2 (original parameterization)

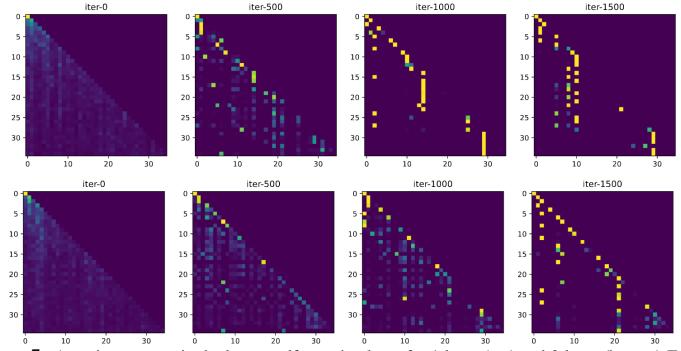


Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Transformer trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Overall strategy of the theoretical analysis

 \boldsymbol{f}_n

normalize

• The power of infinite sequence length $T \rightarrow +\infty$

Lemma 2. Given the event $\{x_T = m, x_{T+1} = n\}$, when $T \to +\infty$, we have $X^{\top} \boldsymbol{b}_T \to \boldsymbol{c}_{m,n}, \qquad X^{\top} \operatorname{diag}(\boldsymbol{b}_T) X \to \operatorname{diag}(\boldsymbol{c}_{m,n})$

where $c_{m,n} = [c_{1|m,n}, c_{2|m,n}, \dots, c_{M|m,n}]^{\top} \in \mathbb{R}^{M}$. Note that $c_{m,n}^{\top} \mathbf{1} = 1$.

Here
$$c_{l|m,n} := \frac{T\mathbb{P}(l|m,n)\exp(z_{ml})}{\sum_{l'}T\mathbb{P}(l'|m,n)\exp(z_{ml'})} = \frac{\mathbb{P}(l|m,n)\exp(z_{ml})}{\sum_{l'}\mathbb{P}(l'|m,n)\exp(z_{ml'})} =: \frac{\tilde{c}_{l|m,n}}{\sum_{l'}\tilde{c}_{l'|m,n}}$$

Define $f_n := f_{m,n} := c_{m,n} / \|c_{m,n}\|_2$ a ℓ_2 -normalized version of $c_{m,n}$.

Overall strategy of the theoretical analysis

• Since $\eta_Y \gg \eta_Z$, we analyze the dynamics of decoder Y first, treating the output of Z as constant.

$$\dot{Y} = \eta_Y \boldsymbol{f}_n (\boldsymbol{e}_n - \boldsymbol{\alpha}_n)^{\top}, \quad \boldsymbol{\alpha}_n = \frac{\exp(Y^{\top} \boldsymbol{f}_n)}{\mathbf{1}^{\top} \exp(Y^{\top} \boldsymbol{f}_n)}$$

• The analysis gives backpropagated gradient:

Theorem 1. If Assumption 2 holds, the initial condition Y(0) = 0, $M \gg 100$, η_Y satisfies $M^{-0.99} \ll \eta_Y < 1$, and each sequence class appears uniformly during training, then after $t \gg K^2$ steps of batch size 1 update, given event $x_{T+1}[i] = n$, the backpropagated gradient $g[i] := Y(\boldsymbol{x}_{T+1}[i] - \boldsymbol{\alpha}[i])$ takes the following form:

$$\boldsymbol{g}[i] = \gamma \left(\iota_n \boldsymbol{f}_n - \sum_{n' \neq n} \beta_{nn'} \boldsymbol{f}_{n'} \right)$$
(9)

Overall strategy of the theoretical analysis

• Given the backpropagated gradient, we can analyze the behavior of the self-attention layer.

Theorem 2 (Fates of contextual tokens). Let G_{CT} be the set of common tokens (CT), and $G_{DT}(n)$ be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the self-attention dynamics (Eqn. 10), we have:

- (a) for any distinct token $l \in G_{DT}(n)$, $\dot{z}_{ml} > 0$ where $m = \psi(n)$;
- (b) if $|G_{CT}| = 1$ and at least one next token $n \in \psi^{-1}(m)$ has at least one distinct token, then for the single common token $l \in G_{CT}$, $\dot{z}_{ml} < 0$.

Conclusions of Scan&Snap

- Take home message
 - Dynamics of self-attention leads to contextual sparsity
 - Key tokens that do not co-occur a lot with the query token are suppressed.
- Application
 - Predicting Contextual Sparsity for fast LLM inference
 - Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time (ICML'23)
- A lot of mysteries remain.
 - Why such sparsity is important for learning?
 - How to add embedding back?
 - What's the role played by MLPs and how MLPs interact with Self-Attn?
 - JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention (arXiv'23)

