JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention

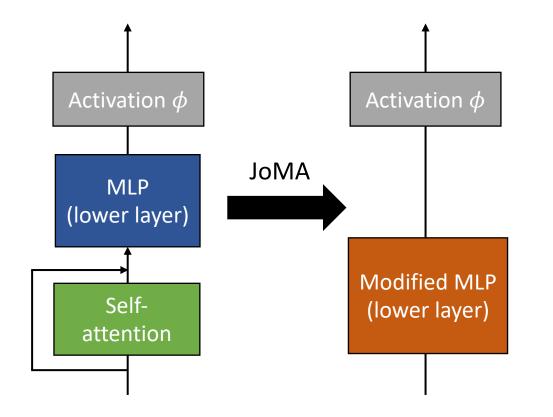
Yuandong Tian<sup>1</sup>, Yiping Wang<sup>2</sup>, Zhenyu Zhang<sup>3</sup>, Beidi Chen<sup>1,4</sup>, Simon Du<sup>2</sup>

<sup>1</sup>Meta AI (FAIR) <sup>2</sup>University of Washington <sup>3</sup>University of Texas, Austin <sup>4</sup>Carnegie Mellon University



Published in International Conference in Learning Representation (ICLR) 2024

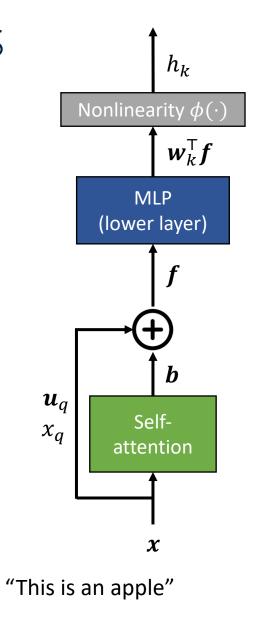
# JoMA: <u>JO</u>int Dynamics of <u>MLP/A</u>ttention layers



## **Main Contributions:**

- 1. Find a joint dynamics that connects MLP with self-attention.
- 2. Understand self-attention behaviors for linear/nonlinear activations.
- 3. Explain how data hierarchy is learned in multi-layer Transformers.

# JoMA Settings



 $f = U_C b + u_q$  $U_C$  and  $u_q$  are embeddings

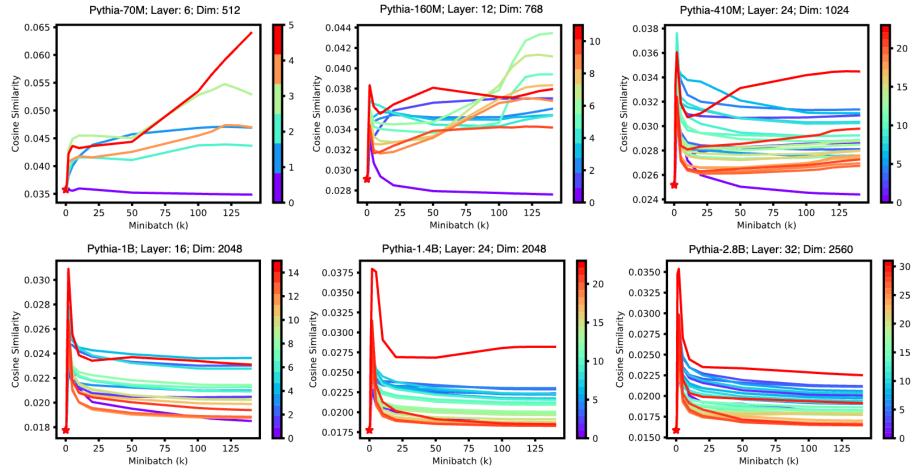
 $h_k = \phi(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{f})$ 

$$\boldsymbol{b} = \sigma(\boldsymbol{z}_q) \circ \boldsymbol{x}/A$$

$$\begin{cases} \text{SoftmaxAttn: } b_l = \frac{x_l e^{z_q l}}{\sum_l x_l e^{z_q l}} \\ \text{ExpAttn: } b_l = x_l e^{z_q l} \\ \text{LinearAttn: } b_l = x_l z_{ql} \end{cases}$$

# Assumption (Orthogonal Embeddings $[U_{\mathcal{C}}, u_q]$ )

Cosine similarity between embedding vectors at different layers.



# JoMA Dynamics

**Theorem 1** (JoMA). Let  $v_k := U_C^\top w_k$ , then the dynamics of Eqn. 3 satisfies the invariants:

• <u>Linear attention</u>. The dynamics satisfies  $\boldsymbol{z}_m^2(t) = \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$ .

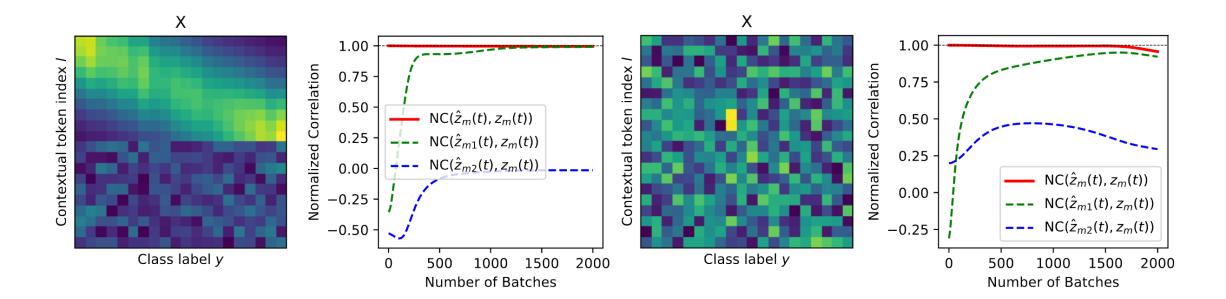
- Exp attention. The dynamics satisfies  $\boldsymbol{z}_m(t) = \frac{1}{2} \sum_k \boldsymbol{v}_k^2(t) + \boldsymbol{c}$ .
- Softmax attention. If  $\bar{\mathbf{b}}_m := \mathbb{E}_{q=m}[\mathbf{b}]$  is a constant over time and  $\mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b} \mathbf{b}^{\top}\right] = \bar{\mathbf{b}}_m \mathbb{E}_{q=m}\left[\sum_k g_{h_k} h'_k \mathbf{b}\right]$ , then the dynamics satisfies  $\mathbf{z}_m(t) = \frac{1}{2}\sum_k \mathbf{v}_k^2(t) \|\mathbf{v}_k(t)\|_2^2 \bar{\mathbf{b}}_m + \mathbf{c}$ .

Under zero-initialization ( $\boldsymbol{w}_k(0) = 0$ ,  $\boldsymbol{z}_m(0) = 0$ ), then the time-independent constant  $\boldsymbol{c} = 0$ .

There is residual connection.

Joint dynamics works for any learning rates between self-attention and MLP layer. No assumption on the data distribution.

# Verification of JoMA dynamics



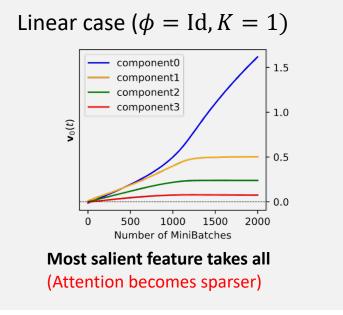
 $z_m(t)$ : Real attention logits  $\hat{z}_m(t)$ : Estimated attention logits by JoMA

$$\hat{\boldsymbol{z}}_{m}(t) = \frac{1}{2} \sum_{k} \boldsymbol{v}_{k}^{2}(t) - \|\boldsymbol{v}_{k}(t)\|_{2}^{2} \overline{\boldsymbol{b}}_{m} + \boldsymbol{c}$$

$$\hat{\boldsymbol{z}}_{m1}(t) \qquad \hat{\boldsymbol{z}}_{m2}(t)$$

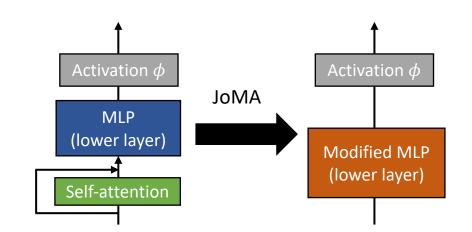
# Implication of Theorem 1

Key idea: folding self-attention into MLP → A Transformer block becomes a modified MLP

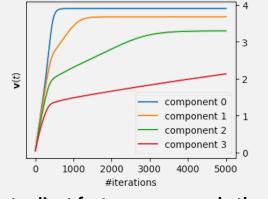


Saliency is defined as 
$$\Delta_{lm} = \mathbb{E}[g|l,m] \cdot \mathbb{P}[l|m]$$

 $\Delta_{lm} \approx 0$ : **Common** tokens  $|\Delta_{lm}|$  large: **Distinct** tokens



Nonlinear case ( $\phi$  nonlinear, K = 1)



Most salient feature grows, and others catch up (Attention becomes sparser and denser)

#### facebook Artificial Intelligence

Discriminancy

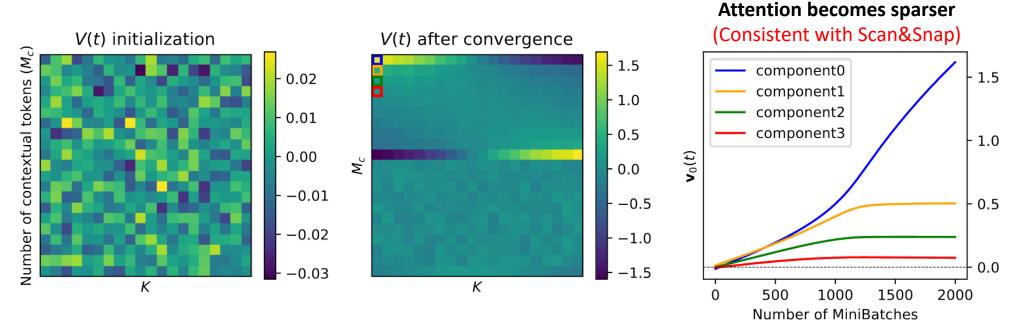
**CoOccurrence** 

# JoMA for Linear Activation

#### Theorem 2

We can prove 
$$\frac{\operatorname{erf}(v_l(t)/2)}{\Delta_{lm}} = \frac{\operatorname{erf}(v_{l'}(t)/2)}{\Delta_{l'm}} \qquad \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \in [-1,1]$$

Only the most salient token  $l^* = \operatorname{argmax} |\Delta_{lm}|$  of  $\boldsymbol{\nu}$  goes to  $+\infty$  other components stay finite.



 $\dot{\boldsymbol{v}} = \boldsymbol{\Delta}_m \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$ 

Linear

Modified

MLP (lower layer)

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS'23]

## JoMA for Nonlinear Activation

### **Theorem 3**

If x is sampled from a mixture of C isotropic distributions, (i.e., "local salient/nonsalient map"), then

$$\dot{\boldsymbol{v}} = \frac{1}{\|\boldsymbol{v}\|_2} \sum_c a_c \theta_1(r_c) \overline{\boldsymbol{x}}_c + \frac{1}{\|\boldsymbol{v}\|_2^3} \sum_c a_c \theta_2(r_c) \boldsymbol{v}$$

Here  $a_c \coloneqq \mathbb{E}_{q=m,c}[g_{h_k}]\mathbb{P}[c], r_c = \boldsymbol{v}^\top \overline{\boldsymbol{x}}_c + \int_0^t \mathbb{E}_{q=m}[g_{h_k}h'_k] dt$ , and  $\theta_1$  and  $\theta_2$  depends on nonlinearity

What does the dynamics look like?

$$\dot{\boldsymbol{v}} = (\boldsymbol{\mu} - \boldsymbol{v}) \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right)$$

 $\mu \sim \overline{x}_c$ : Critical point due to nonlinearity (one of the cluster centers)

facebook Artificial Intelligence

0  $\overline{x}_{2}$ 

0

 $\bigcirc$ 

0

# JoMA for Nonlinear activation

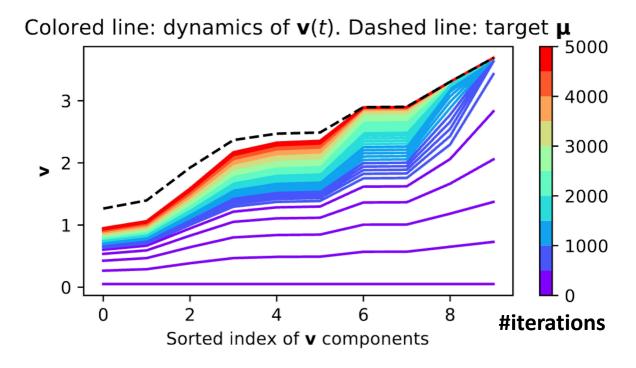
# $\dot{\boldsymbol{v}} = (\boldsymbol{\mu} - \boldsymbol{v}) \circ \exp\left(\frac{\boldsymbol{v}^2}{2}\right) \begin{array}{l} \text{Modified} \\ \text{MLP} \\ \text{(lower layer)} \end{array}$

### **Theorem 4**

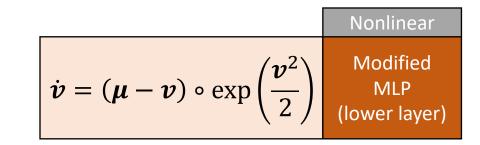
Salient components grow much faster than non-salient ones:

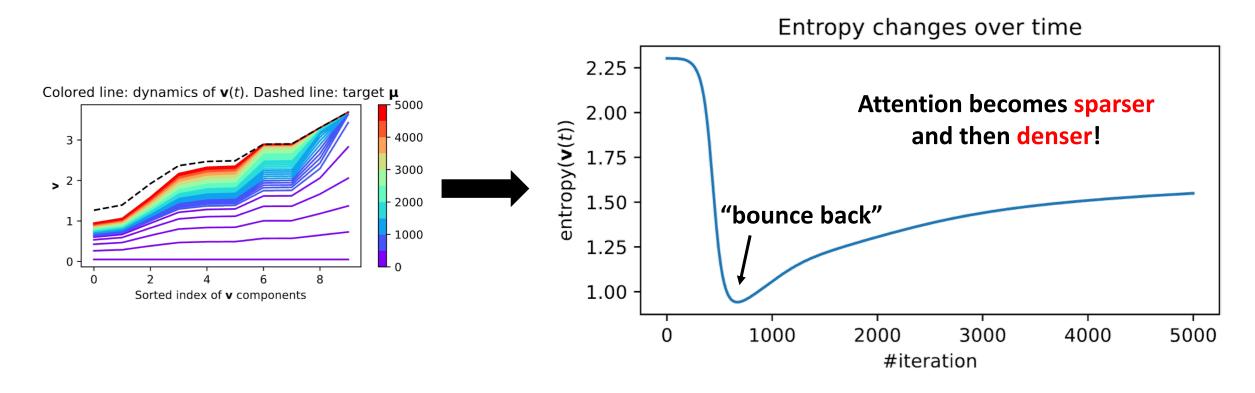
 $\frac{\text{ConvergenceRate}(j)}{\text{ConvergenceRate}(k)} \sim \frac{\exp(\mu_j^2/2)}{\exp(\mu_k^2/2)}$ 

ConvergenceRate(j) :=  $\ln 1/\delta_j(t)$  $\delta_j(t) := 1 - v_j(t)/\mu_j$ 

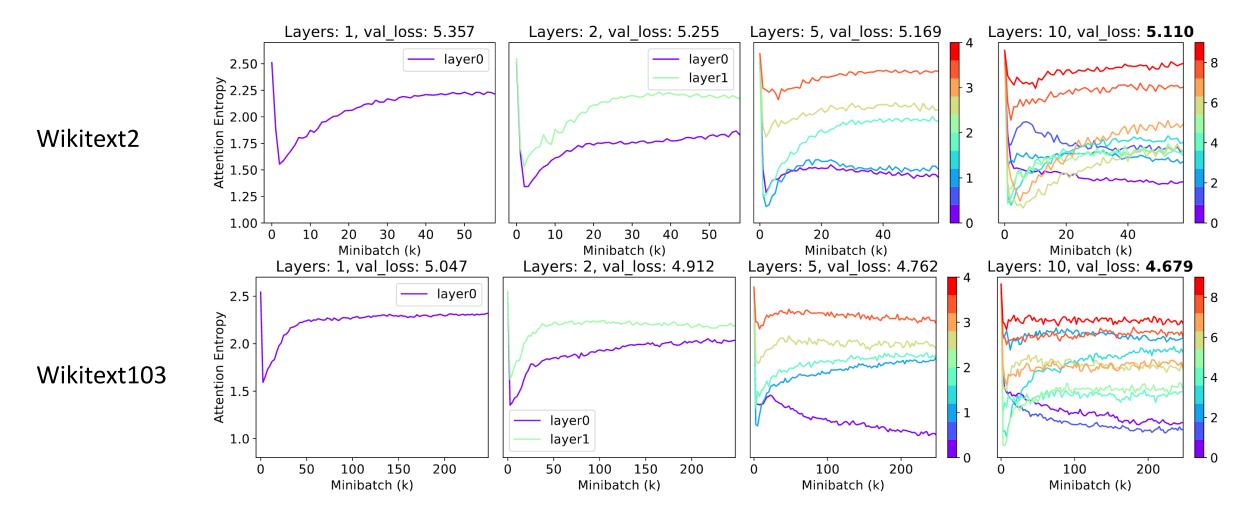


# JoMA for Nonlinear activation

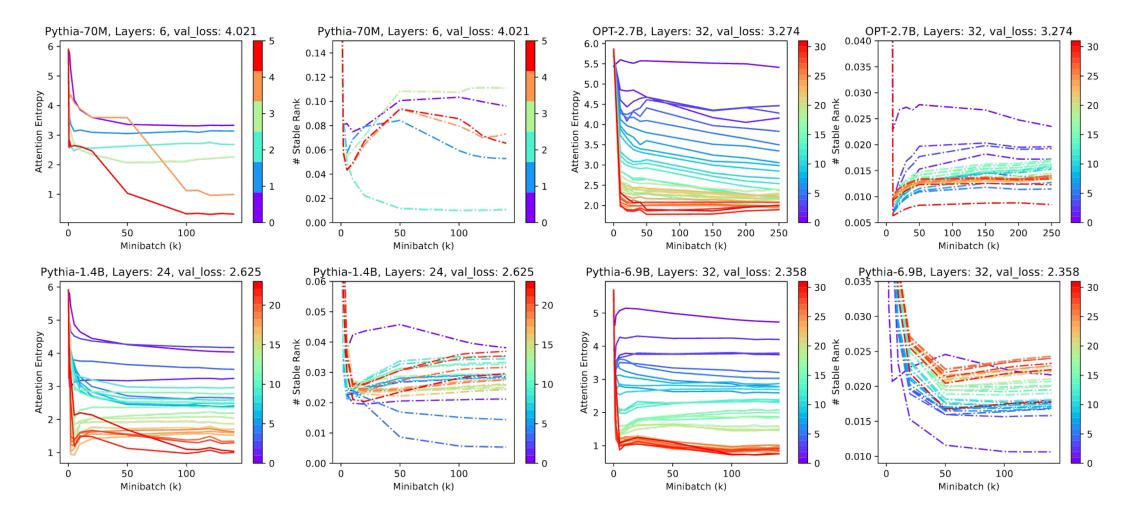




## Real-world Experiments



## Real-world Experiments



facebook Artificial Intelligence

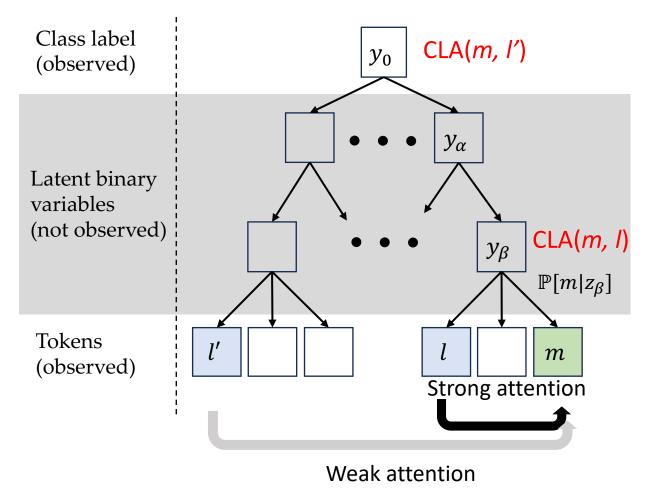
Stable Rank of the lower layer of MLP shows the "bouncing back" effects as well.

# Why is this "bouncing back" property useful?

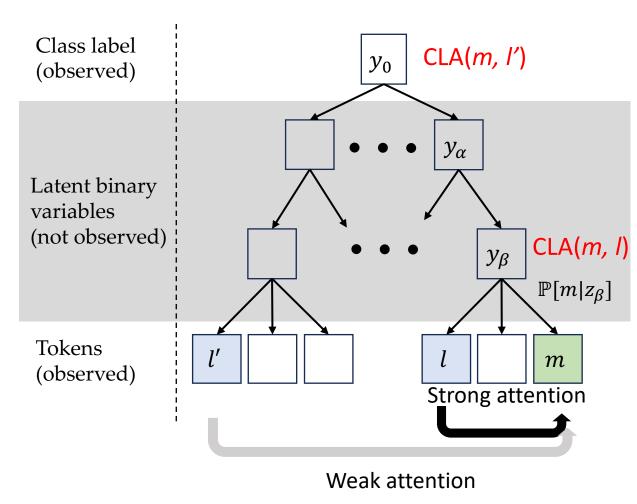
It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

# Data Hierarchy & Multilayer Transformer



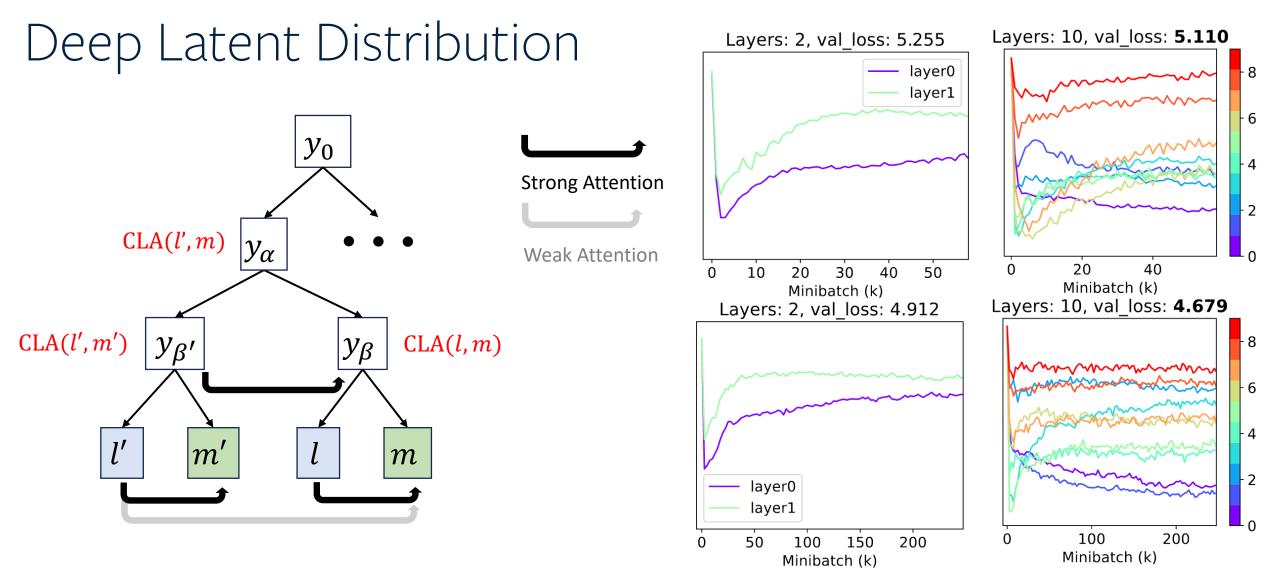
# Data Hierarchy & Multilayer Transformer



Theorem 5
$$\mathbb{P}[l|m] \approx 1 - \frac{H}{L}$$

*H*: height of the common latent ancestor (CLA) of l & m

*L*: total height of the hierarchy

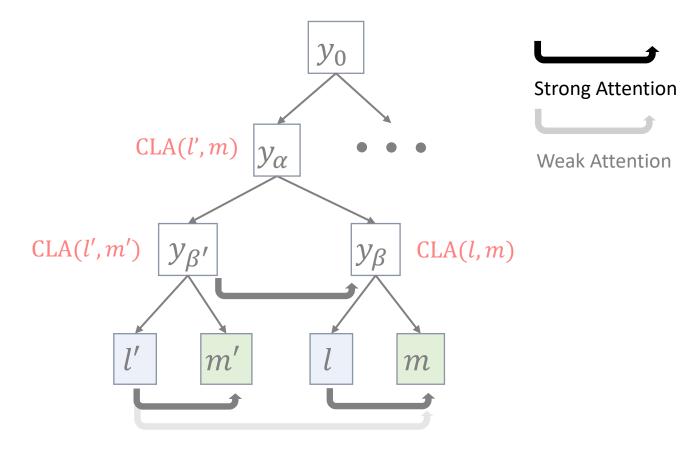


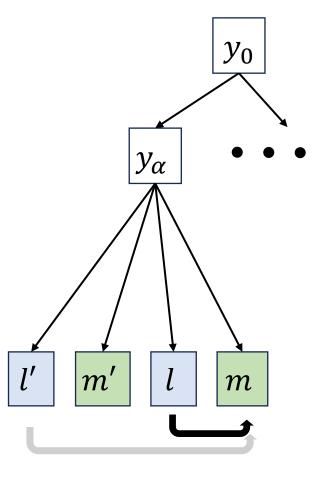
Learning the current hierarchical structure by

facebook Artificial Intelligence

slowing down the association of tokens that are not directly correlated

# Shallow Latent Distribution





Self-attention enables Hierarchy-agnostic Learning!

# Future Work

- How embedding vectors are learned?
  - In both Scan&Snap and JoMA, we assume embeddings are constant.
- Positional Encoding
- Formulate the dynamics of Multi-layer Transformers
  - How intermediate latent concept gets learned during training?
  - Why we need over-parameterization?

