
Understanding Foundational Models via the Lens
of Training Dynamics

Yuandong Tian
Research Scientist and Manager

Meta AI (FAIR)

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

What does the future look like?

More data

More compute

Larger models

Are we going to blindly believe in scaling laws?

Black-box versus White-box

Black box White box

Black-box versus White-box

Black box White box

Three Angles

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-

Three Angles

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-

Which path should we take?

Three Angles – What to pick?

Expressibility

Optimization

Generalization

+ -
+- Architecture ✓

training dynamics ✘

Architecture ✘

training dynamics ✓

Architecture ✘
training dynamics ✘

How about

Architecture ✓
training dynamics ✓

Start From the First Principle

• Training follows Gradient and its variants (SGD, Adams, etc)

• First principle à Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

• Sounds complicated.. Is that possible? Yes

�̇� ≔
d𝒘
d𝑡

= −∇𝒘𝐽(𝒘)

Architecture ✓
training dynamics ✓

Transformers

Attention mechanism

[A. Vaswani et al, Attention is all you need, NeurIPS’17]

Key 𝐾

Query 𝑄

Understanding Attention in 1-layer Setting

Contextual tokens

𝑥# 𝑥$ 𝑥%&# 𝑥% 𝑥%'#

Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Different next token =
Different classes in classification

Reparameterization

• Parameters 𝑊! ,𝑊" ,𝑊# , 𝑈 makes the dynamics complicated.

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊(

%𝑈% (Merging the embedding with weight matrix)
• 𝑍 = 𝑈𝑊)𝑊*

%𝑈% (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Y

Z

𝒇!

normalize

Data

Class Prediction

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

Distinct
Token

Common
Token

�̃�2|4!

�̃�2|4"

At initialization

Common tokens: Tokens that appear in multiple classes.
Distinct tokens: Tokens that only appear in a single class.

�̃�2|4! : = ℙ 𝑙 𝑚, 𝑛# exp(𝑧52)

Initial condition: 𝑧52 0 = 0

Co-occurrence probability

Pairwise attention score
between token 𝑙 and query 𝑚

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Common Token Suppression

(a) ̇𝑧$% < 0, for common token 𝑙

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Winners-emergence

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

(c) 𝑧$%(𝑡) grows faster with
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that
frequently co-occur with the query.

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Theorem 3 Relative gain 𝑟$/$!|! 𝑡 ≔
̃("|$
%)
̃("!|$
%)

− 1 has a

close form:

𝑟2/2#|4 𝑡 = 𝑟2/2#|4 0 𝜒2(𝑡)

If 𝑙* is the dominant token: 𝑟$&/$|! 0 > 0 for all 𝑙 ≠ 𝑙*
then

𝑒$@$%&
" (A)B$ C ≤	𝜒2&(𝑡) ≤ 𝑒B C

where 𝐵! 𝑡 ≥ 0 monotonously increases, 𝐵! 0 = 0

(c) 𝑧52(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Theorem 3 Relative gain 𝑟$/$!|! 𝑡 ≔
̃("|$
%)
̃("!|$
%)

− 1 has a

close form:

𝑟2/2#|4 𝑡 = 𝑟2/2#|4 0 𝜒2(𝑡)

If 𝑙* is the dominant token: 𝑟$&/$|! 0 > 0 for all 𝑙 ≠ 𝑙*
then

𝑒$@$%&
" (A)B$ C ≤	𝜒2&(𝑡) ≤ 𝑒B C

where 𝐵! 𝑡 ≥ 0 monotonously increases, 𝐵! 0 = 0

(c) 𝑧52(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual
Sparsity
(query-dependent)

Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Attention frozen
Theorem 4 When 𝑡 → +∞,

𝐵! 𝑡 ∼ ln 𝐶" + 2𝐾
𝜂#
𝜂$
ln%

𝑀𝜂$𝑡
𝐾

Attention scanning:
 When training starts, 𝐵! 𝑡 = 𝑂(ln 𝑡)

Attention snapping:
 When 𝑡 ≥ 𝑡" = 𝑂 %& '()

*!
, 𝐵! 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂+ and 𝜂, are large, 𝐵! 𝑡 is large and attention is sparse

(2) Fixing 𝜂+, large 𝜂, leads to slightly small 𝐵! 𝑡 and
denser attention

Contextual
Sparsity
(query-dependent)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Winners-emergence

(a) ̇𝑧$% < 0, for common token 𝑙

(b) ̇𝑧$% > 0, for distinct token 𝑙

(c) 𝑧$%(𝑡) grows faster with
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that
frequently co-occur with the query.

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Theorem 3 Relative gain 𝑟$/$!|! 𝑡 ≔
̃("|$
%)
̃("!|$
%)

− 1 has a

close form:

𝑟2/2#|4 𝑡 = 𝑟2/2#|4 0 𝜒2(𝑡)

If 𝑙* is the dominant token: 𝑟$&/$|! 0 > 0 for all 𝑙 ≠ 𝑙*
then

𝑒$@$%&
" (A)B$ C ≤	𝜒2&(𝑡) ≤ 𝑒B C

where 𝐵! 𝑡 ≥ 0 monotonously increases, 𝐵! 0 = 0

(c) 𝑧52(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Theorem 3 Relative gain 𝑟$/$!|! 𝑡 ≔
̃("|$
%)
̃("!|$
%)

− 1 has a

close form:

𝑟2/2#|4 𝑡 = 𝑟2/2#|4 0 𝜒2(𝑡)

If 𝑙* is the dominant token: 𝑟$&/$|! 0 > 0 for all 𝑙 ≠ 𝑙*
then

𝑒$@$%&
" (A)B$ C ≤	𝜒2&(𝑡) ≤ 𝑒B C

where 𝐵! 𝑡 ≥ 0 monotonously increases, 𝐵! 0 = 0

(c) 𝑧52(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual
Sparsity
(query-dependent)

Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛")	

Seq class
(𝑚, 𝑛#)	

�̃�2|4!

�̃�2|4"

Attention frozen
Theorem 4 When 𝑡 → +∞,

𝐵! 𝑡 ∼ ln 𝐶" + 2𝐾
𝜂#
𝜂$
ln%

𝑀𝜂$𝑡
𝐾

Attention scanning:
 When training starts, 𝐵! 𝑡 = 𝑂(ln 𝑡)

Attention snapping:
 When 𝑡 ≥ 𝑡" = 𝑂 %& '()

*!
, 𝐵! 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂+ and 𝜂, are large, 𝐵! 𝑡 is large and attention is sparse

(2) Fixing 𝜂+, large 𝜂, leads to slightly small 𝐵! 𝑡 and
denser attention

Contextual
Sparsity
(query-dependent)

Simple Real-world Experiments

WikiText2
(original parameterization)

Further study of sparse attention
 à Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

Follow-up works

• Scan & Snap has Multiple Assumptions
• No positional encoding
• Sequence length 𝑇 → +∞
• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂H ≫ 𝜂I)
• Other technical assumptions

• How to get rid of them?
• Follow-up work: JoMA

JoMA: JOint Dynamics of MLP/Attention layers

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-
attention

Activation 𝜙

JoMA

Main Contributions:

1. Find a joint dynamics that connects
 MLP with self-attention.
2. Understand self-attention behaviors for
 linear/nonlinear activations.
3. Explain how data hierarchy is learned in
 multi-layer Transformers.

JoMA Settings
ℎ+ = 𝜙(𝒘+

,𝒇)

𝒇 = 𝑈-𝒃 + 𝒖.
 𝑈- and 𝒖.	are embeddings

𝒃 = 𝜎 𝒛. ∘ 𝒙/𝐴
Self-

attention

Nonlinearity 𝜙(⋅)

MLP
(lower layer)

𝒙

𝒖-
𝑥-

𝒃

ExpAttn: 𝑏/ = 𝑥/𝑒#"#

SoftmaxAttn: 𝑏/ =
0#1

$"#

∑# 0#1
$"#

LinearAttn: 𝑏/ = 𝑥/𝑧./

𝒇

“This is an apple”

𝒘.
/𝒇

ℎ.

JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution.

Linear case (𝜙 = Id, 𝐾 = 1)

Key idea: folding self-attention into MLP
 à A Transformer block becomes a modified MLP

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-attention

Activation 𝜙
JoMA

Nonlinear case (𝜙 nonlinear, 𝐾 = 1)

Most salient feature takes all
(Attention becomes sparser)

Most salient feature grows, and others catch up
(Attention becomes sparser and denser)

Saliency is defined as Δ/3 = 𝔼 𝑔 𝑙,𝑚 ⋅ ℙ 𝑙 𝑚

𝐃𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝐚𝐧𝐜𝐲 𝐂𝐨𝐎𝐜𝐜𝐮𝐫𝐫𝐞𝐧𝐜𝐞

Implication of Theorem 1

Δ$0 ≈ 0: Common tokens
Δ$0 large: Distinct tokens

JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified
MLP

(lower layer)

Linear

�̇� = 𝚫3 ∘ exp
𝒗%

2

erf 𝑣$(𝑡)/2
Δ$0

=
erf 𝑣$!(𝑡)/2

Δ$!0
We can prove erf 𝑥 =

2
𝜋
=
!

"
𝑒#$!d𝑡 ∈ [−1,1]

Only the most salient token 𝑙∗ = argmax	|Δ&'| of 𝒗 goes to +∞
other components stay finite.

Theorem 2

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

What if we have more nodes (𝐾	 > 	1)?

• 𝑉	 = 	𝑈XY𝑊 ∈ ℝZ!×! and the dynamics becomes

�̇� =
1
𝐴
diag exp

𝑉 ∘ 𝑉
2

𝟏 Δ Δ = Δ", Δ#, … , Δ1 , 	 Δ. = 𝔼[𝑔.𝒙]

We can prove that 𝑉 gradually becomes low rank
• The growth rate of each row of 𝑉 varies widely.

Due to exp (∘(
$

, the weight gradient �̇� can be even more low-rank

𝑉(𝑡) →

O

pre-training

fine-tuning

How the Weight Rank Changes over time?
Consider the Entire Training Trajectory …

O

Beginning of Training: Weight subspace changes a lot

How the Weight Rank Changes over time?

𝑊 high rank
(due to random
initialization)

O

Mid/End of Training: Weight subspace changes little

How the Weight Rank Changes over time?

𝑊 low rank

LoRA does not work LoRA can work

O O

Think about LoRA?

LoRA (Low-rank Adaption)𝑊 high rank (due to random initialization) 𝑊 low rank

GaLore

𝐺4 ← −∇5𝜙(𝑊4)
If	t	%	T	==	0:	
								Compute	𝑃4 = SVD 𝐺4 ∈ ℝ3×7	
𝑅4 ← 𝑃48𝐺4 {project}
z𝑅4 ← 𝜌 𝑅4 {Adam in low-rank}
z𝐺4 ← 𝑃4 z𝑅4 {project-back}
𝑊49: ← 𝑊4 + 𝜂 z𝐺4

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML’24 Oral]

low-rank weights à low-rank gradients

Reduce optimizer states and weight gradients, Achieve 82.5% mem reduction

Weight Memory

Activation
Memory

Optimizer +
Gradient Memory

GaLore
(8-bit + per-layer)

58 GB < 24 GB

Memory Saving in GaLore

𝐺 = ∑b𝐴b −∑b𝐵b𝑊𝐶b

For gradient in the following form

Let 𝑅 = 𝑃,𝐺𝑄 be projected gradient (P and Q are fixed) then

𝑹𝒕 𝑭 ≤ 𝟏 − 𝜼𝑴 𝑹𝒕�𝟏 𝑭 → 𝟎

Where 𝑀 ≔ :
;
∑<min4 𝜆=>(�𝐵<4 𝜆=>(�𝐶<4 − 𝐿? − 𝐿@𝐿-𝐷%

�𝐵<4 = 𝑃48𝐵< 𝑊4 𝑃4 	 �𝐶<4= 𝑄48𝐶< 𝑊4 𝑄4

Does that mean it works? No… 𝑅4 → 0 just means the gradient within the subspace vanishes.
How to continue optimization? Change the projection from time to time!

Convergence Analysis on Fixed Projection

For	every	T	iterations:
	Compute	and	store	𝑷𝒕= SVD 𝑮𝒕
	𝑷𝒕	is	the	projection	matrix.	

𝑮𝟎

𝑮𝟏

𝑮𝟐 𝑷

𝑷𝑷𝑻 𝑮𝒕 ≈ 𝑮𝒕

No	need	to	change	 𝑷𝒕	every	iteration!

Consecutive gradients are similar

Training 130M models (𝑑=ABC' = 768)
How often to change 𝑃"?

7B	model	trained	on	up	to	
150K	steps	and	19.7	B	tokens

C4 Dataset LLaMA-7B single RTX 4090

Pre-training - for the first time!

Pre-training Results (LLaMA 7B) on C4

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗%

2

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇D%/2
exp 𝜇+%/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿D(𝑡)
𝛿D 𝑡 ≔ 1 − 𝑣D(𝑡)/𝜇D

Theorem 4

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)
ConvergenceRate(𝑘)

~
exp 𝜇D%/2
exp 𝜇+%/2

ConvergenceRate 𝑗 ≔ 	 ln 1/𝛿D(𝑡)
𝛿D 𝑡 ≔ 1 − 𝑣D(𝑡)/𝜇D

Theorem 4

#iterations

JoMA for Nonlinear activation Modified
MLP

(lower layer)

Nonlinear

�̇� = 𝝁 − 𝒗 ∘ exp
𝒗%

2

Attention becomes sparser
and then denser!

“bounce back”

How the entropy of attention changes over time?

Real-world Experiments

Wikitext2

Wikitext103

Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦*

𝑙

𝑦2
ℙ[𝑚|𝑧(]

𝑦3

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

CLA(m, l)

CLA(m, l’)

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦*

𝑙

𝑦2
ℙ[𝑚|𝑧(]

𝑦3

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻
𝐿

𝐻: height of the common latent
 ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)
Theorem 5

Deep Latent Distribution

𝑙′ 𝑚′

𝑦f#

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by
slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

𝑦g

𝑙′ 𝑚′ 𝑙 𝑚

𝑦A

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦f#

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′)

Hierarchy-agnostic Learning

𝑦g

𝑙′ 𝑚′ 𝑙 𝑚

𝑦A

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦f#

𝑦A

𝑙

𝑦f

𝑦g

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙,𝑚)CLA(𝑙′, 𝑚′) Self-attention enables Hierarchy-agnostic Learning!

Verification of Hierarchical Intuitions

Take away messages

• Architecture ✓ training dynamics ✓

• Nonlinearity is not formidable!
• Transformer can be analyzed following gradient descent rules

• Property of self-attention
• Attention becomes sparse over training
• Inductive bias

• Favor the learning of strong co-occurred tokens
• Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.

• Key insights lead to broad applications

Thanks!

