
SurCo: Learning Linear Surrogates for
Combinatorial Nonlinear Optimization

Aaron Ferber1, Taoan Huang1, Daochen Zha2, Martin Schubert3,

Benoit Steiner4, Bistra Dilkina1, Yuandong Tian4

1University of Southern California, 2Rice University, 3Reality Lab Display, 4Meta AI (FAIR)

Optimizing Nonlinear Functions over
Combinatorial Regions
• Nonlinear + differentiable objective
• Combinatorial feasible region
• Real-world domains:
• Computer system planning
• Designing photonic devices
• Throughput optimization
• Antenna design
• Energy grid

Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device memory capacity 𝑀

Find
• Allocation of tables to devices observing device memory limits
• Minimize latency which is estimated by a neural network (capturing nonlinear

interactions)

Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device 𝑗 has memory capacity 𝑀"

Min! 𝑳 {𝑥"#} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀" , ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)

Nonlinear Optimization is Hard

• Specific domains have specialized solvers

• General solvers are often slow (without very careful modeling)

• Genetic algorithms or gradient-based methods may not find feasible
solutions

Linear Optimization is Easy(ish)

• MILP solvers (CPLEX, Gurobi, SCIP) easily handle industry-scale
problems
• Plus other solvers for linear settings
• Greedy
• LP + total unimodularity

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the
nonlinear problem

Originally Now

min
𝒙
𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the
nonlinear problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ (= argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes)(!; %) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Originally Now

Challenge: how to find the right objective?

Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the
nonlinear problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ (= argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes)(!; %) as much as possible

Surrogate optimization

combinatorial
constraints

solved by existing combinatorial solvers

Originally Now

Proposal: gradient-based optimization

Proposal: surrogate learning

• Use surrogate MILP to solve original problem
• Find linear coefficients c such that argmin

#∈%
𝑓(𝑥) ≈ argmin

#∈%
𝑐&𝑥

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

SurCo-zero: gradient-based optimization

• Iterative solver based on linear surrogate guided by gradient updates
• Update linear coefficients 𝑐 such that 𝑥∗ 𝑐 improves objective 𝑓 𝑥∗(𝑐)

∇"𝑓(𝑥)∇&𝑥∗(𝑐)
Assumed differentiableRecent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

SurCo-prior: distributional learning

• One pass solver based on model learned offline
• Use neural model based on problem features to predict linear coefficients

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate Coefficients
𝑐

∇"𝑓(𝑥)
Assumed differentiable

∇&𝑥∗(𝑐)
Recent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Neural Network
𝑐 = 𝑁𝑁 𝑦; 𝜃

𝜃
Model parameters

Problem features
𝑦

∇'𝑁𝑁 𝑦; 𝜃
Standard NN autograd

Pytorch
Tensorflow
JAX etc…

SurCo-prior: distributional learning

• Update neural network parameters from training dataset

Train Model
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

SurCo-hybrid: fine-tuning
from trained model

Update neural network parameters
from training dataset Fine-tune surrogate on-the-fly

Train Model
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)

SurCo-zero

No offline training data, just solve a single problem instance on-the-fly

∇"𝑓(𝑥)∇&𝑥∗(𝑐)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate
Coefficients 𝑐

SurCo-prior

Uses offline training data to quickly solve problems at test time with just one solver call

Train Model
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

SurCo-hybrid

Offline train + on-the-fly fine-tuning the surrogate

Train Model
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)

Related Work
Differentiable optimization: backprop through solvers

Amos et al. OptNet: Differentiable optimization as a layer in neural networks. ICML
2017
Agrawal et al. Differentiable Convex Optimization Layers. NeurIPS 2019
Berthet et al. Learning with Differentiable Perturbed Optimizers. NeurIPS 2020
Demirović et al. Predict+Optimise with Ranking Objectives: Exhaustively Learning
Linear Functions. IJCAI 2019
Demirović et al. Dynamic Programming for Predict + Optimise. AAAI 2020
Djolonga et al. Differentiable Learning of Submodular Models. NeurIPS 2017
Donti et al. Task-Based End-to-End Model Learning in Stochastic Optimization.
NeurIPS 2017
Elmachtoub et al. Smart “Predict, then Optimize”. Management Science 2022
Ferber et al. MIPaaL: Mixed Integer Program as a Layer. AAAI 2020
Lee et al. Meta-Learning with Differentiable Convex Optimization. CVPR 2019
Mandi et al. Smart Predict-and-Optimize for Hard Combinatorial Optimization
Problems. AAAI 2020
Niepert et al. Implicit MLE: Backpropagating Through Discrete Exponential Family
Distributions. NeurIPS 2021
Valstelica et al. Differentiation of Blackbox Combinatorial Solvers. ICLR 2019
Rolnínek et al. Optimizing Rank-Based Metrics with Blackbox Differentiation. CVPR
2020
Wang et al. Automatically Learning Compact Quality-Aware Surrogates for
Optimization Problems. NeurIPS 2020
Wang et al. SATNet: Bridging Deep Learning and Logical Reasoning Using a
Differentiable Satisfiability Solver. ICML 2019
Wilder et al. Melding the Data-Decisions Pipeline: Decision-focused Learning for
Combinatorial Optimization. AAAI 2019
Wilder et al. End to End Learning and Optimization on Graphs. NeurIPS 2019

Mixed Integer Nonlinear Optimization: general-purpose solvers
Burer et al. Non-Convex Mixed Integer Nonlinear Programming: A Survey. ORMS 2012
Belotti et al. Mixed Integer Nonlinear Optimization. Acta Numerica 2013

General-purpose heuristic optimizers: combinatorial constraints are hard
Gad et al. Pygad: An Intuitive Genetic Algorithm Python Library. 2021
Rapin et al. Nevergrad – A Gradient-Free Optimization Platform. 2018
Wang et al. Learning Search Space Partition for Black-Box Optimization Using Monte Carlo Tree
Search. NeurIPS 2020
Wang et al. Sample Efficient Neural Architecture Search by Learning Actions for Monte Carlo
Tree Search. PAMI 2021

RL for combinatorial optimization: combinatorial constraints are hard
Khalil et al. Learning Combinatorial Optimization Algorithms Over Graphs. NeurIPS 2017
Kool et al. Attention, Learn to Solve Routing Problems! ICLR 2018
Mazyavkina et al. Reinforcement Learning for Combinatorial Optimization: A Survey. COR 2021
Nazari et al. Reinforcement Learning for Solving the Vehicle Routing Problem. NeurIPS 2018
Zhang et al. A Reinforcement Learning Approach to Job-Shop Scheduling. IJCAI 1995

Embedding Table Sharding
Used in large-scale deep learning systems: recommendation systems, knowledge graph

Place N “tables” (with known memory need 𝑚%) on K devices (𝑥%& = 1: table 𝑖 assigned to device 𝑗)

Min9 𝐿 {𝑥!"} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀", ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

𝐿 : Runtime bottleneck f(x) estimated by NN (longest-running device)

𝐿 is nonlinear due to system issues
(e.g., batching, communication, etc.)

c 𝑦; 𝜃 gives surrogate ”per-table cost” 𝑐+,
(and ∑+, 𝑐+,𝑥+, is the surrogate latency objective)

Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy
• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets

https://github.com/facebookresearch/dlrm_datasets

Inverse Photonic Design

• Design physically-viable devices that take light waves and routes
different wavelengths to correct locations

• Device design misspecification loss f(x) computed by differentiable
electromagnetic simulator
• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)
• x = ~binary_opening(~x, brush)

Inverse Photonic Design

• Dataset: Ceviche Challenges1

• Most baselines don’t work here due to combinatorial
constraints
• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation 2 of brush
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges

Results – Table Sharding

Results – Inverse Photonics

Inverse photonics Convergence comparison +
Solution example

0 25 50 75 100 125 150 175 200

Step

0.0

0.2

0.4

0.6

0.8

1.0

D
es

ig
n

M
is

sp
ec

ifi
ca

ti
on

Inverse Photonics Loss Convergence

Method
Pass-Through

SurCo-zero

SurCo-hybrid

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer

Conclusion

• Handle industrial applications with differentiable optimization

• High-quality solutions to combinatorial nonlinear optimization by
finding linear surrogates
• Sometimes we can find “easier” surrogate problems that solve much more

difficult instances

• SurCo works in several data settings
• Zero-shot vs Offline training
• One step inference vs fine-tuning

Thanks!

