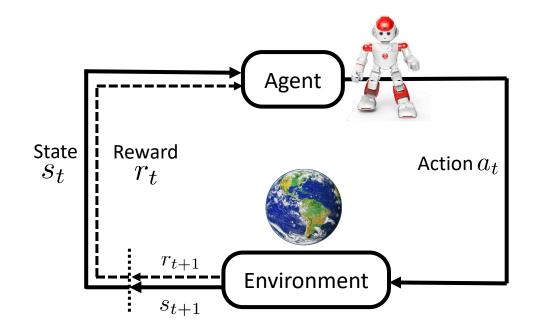
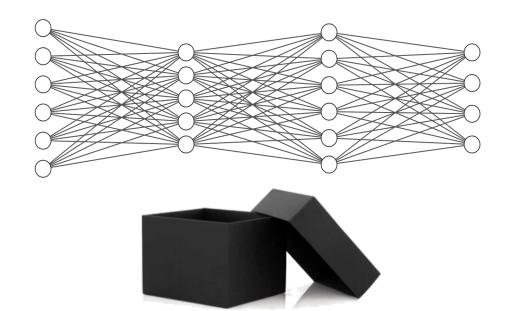
Learning Multi-Agent Collaborations With Decomposition

Yuandong Tian Research Scientist Facebook AI Research

Research Directions

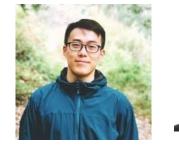


Reinforcement Learning



Theoretical Understanding of Deep Models

Multi-Agent Ad-hoc team play through Reward Attributional Q-functions



Tianjun Zhang^{1,4}

Huazhe Xu^{1,4}

 $^{2}UCSD$

Kurt Keutzer¹

Joseph E. Gonzalez¹ Yuandong Tian⁴

Xiaolong Wang^{1,2}

¹UC Berkeley

³Tsinghua University

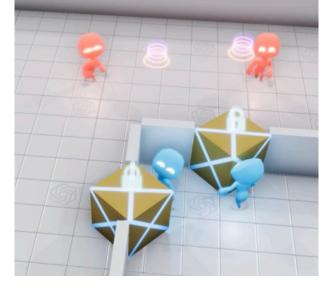
⁴FaceBook AI Research

Yi Wu³

Videos: https://sites.google.com/view/collaq-starcraft

Code: https://github.com/facebookresearch/CollaQ

Multi-Agent Reinforcement Learning



DoTA 2 (OpenAl) Quake 3 (DeepMind)

Find and Seek (OpenAl)

Research Target

- Efficiently training collaborative agents
- Adapt to new team configurations in test time without fine-tuning

We propose **<u>Coll</u>**aborative <u>**Q**</u>-learning (CollaQ)

Value Function Decoupling in Collaborative Setting

The state of agent *i*

Joint Value Function
$$V_{joint}(s_1, s_2, ..., s_K)$$

1. Exponential sample complexity to estimate this function

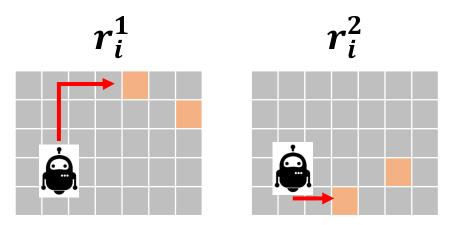
- **2.**⁽²⁾ No decentralized execution
- **3.** Θ Not able to generalize with new agent / team mates.

Model agent collaborations using reward attribution.

The Assigned Reward for each agent *i*

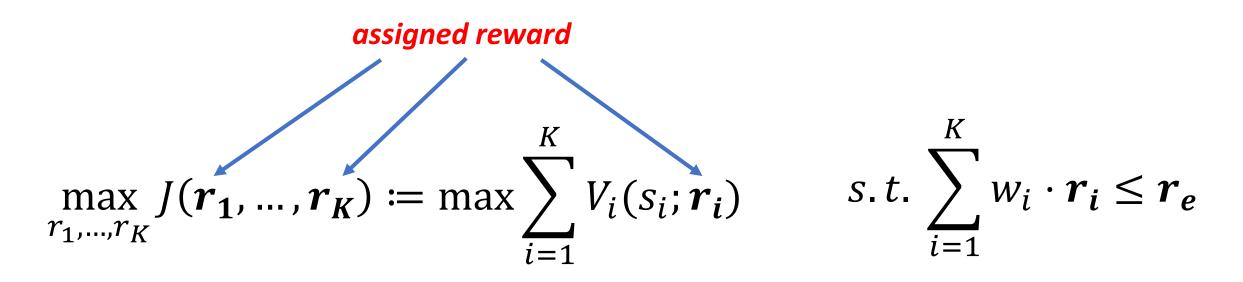
$V_i(s_i; \boldsymbol{r_i})$: the decentralized value function of agent *i* conditioned on **assigned reward** $\boldsymbol{r_i}$

By changing the **assigned** rewards \boldsymbol{r}_{i} , the behavior of agent *i* is changed.



Different perceived reward leads to different values/policies

Reward Assignment Problems

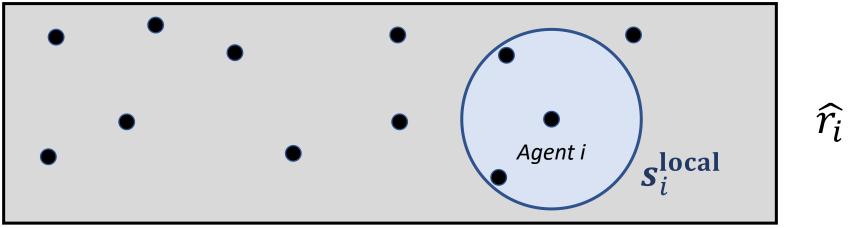


Hard problem! Out decentralized!

Approximate decentralized perceived reward $\widehat{r_i}$

Theorem 1. For all $i \in \{1, ..., K\}$, all $s_i \in S_i$, there exists a reward assignment $\hat{\mathbf{r}}_i$ that (1) only depends on $\mathbf{s}_i^{\text{local}}$ and (2) $\hat{\mathbf{r}}_i$ is the *i*-th column of a feasible global reward assignment \hat{R} so that $J(\hat{R}) \ge J(R^*) - (\gamma^C + \gamma^D)R_{\max}MK,$ (2)

where C and D are constants related to distances between agents/rewards (details in Appendix).



$$\widehat{r}_i = \widehat{r}_i(\boldsymbol{s_i^{\text{local}}})$$

Using end-to-end Training instead of getting $\widehat{r_i}$

Taylor Expansion with respect to assigned reward:

$$\widehat{r_i} = \widehat{r_i} \left(\mathbf{s_i^{local}} \right) = r_{0i} + \left(\widehat{r_i} - r_{0i} \right)$$

assigned reward when the agent i is alone

$$Q_{i}(s_{i}, a_{i}; \hat{\mathbf{r}}_{i}) = \underbrace{Q_{i}(s_{i}, a_{i}; \mathbf{r}_{0i})}_{Q^{\text{alone}}(s_{i}, a_{i})} + \underbrace{\nabla_{\mathbf{r}}Q_{i}(s_{i}, a_{i}; \mathbf{r}_{0i}) \cdot (\hat{\mathbf{r}}_{i} - \mathbf{r}_{0i}) + \mathcal{O}(\|\hat{\mathbf{r}}_{i} - \mathbf{r}_{0i}\|)}_{Q^{\text{collab}}(\mathbf{s}_{i}^{\text{local}}, a_{i})}$$

<u>Collaborative Q</u>-learning (CollaQ)

$$Q_i(o_i, a_i) = Q_i^{\text{alone}}(o_i^{\text{alone}}, a_i) + Q_i^{\text{collab}}(o_i, a_i)$$
$$Q_i^{\text{collab}} = 0 \text{ if } o_i = o_i^{\text{alone}}$$

Objective function:

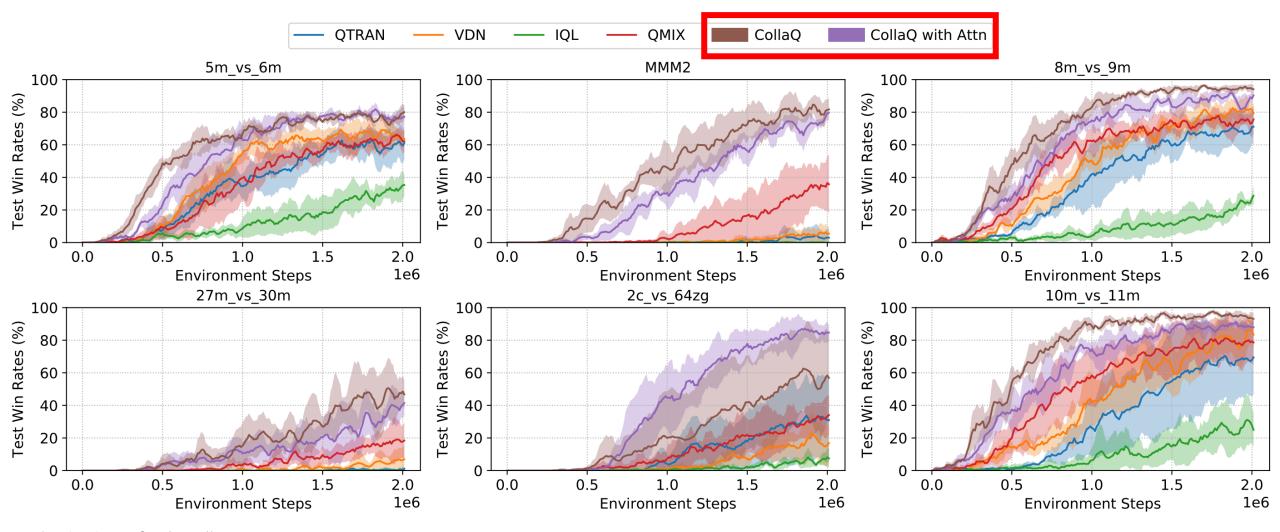
$$L = \mathbb{E}_{s_i, a_i \sim \rho(\cdot)} [\underbrace{(y - Q_i(o_i, a_i))^2}_{\text{DQN Objective}} + \underbrace{\alpha(Q_i^{\text{collab}}(o_i^{\text{alone}}, a_i))^2}_{\text{MARA Objective}}]$$

Starcraft II Multi-Agent Challenge

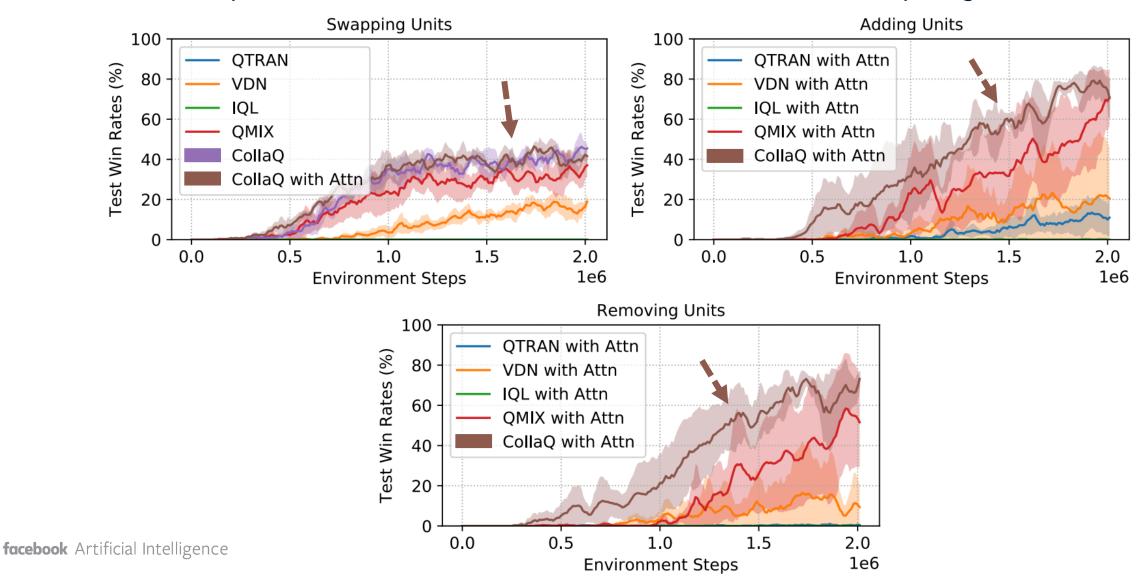
facebook Artificial Intelligence

[M. Samvelyan, The StarCraft Multi-Agent Challenge, arXiv 2019]

CollaQ outperforms baselines in *hard tasks*



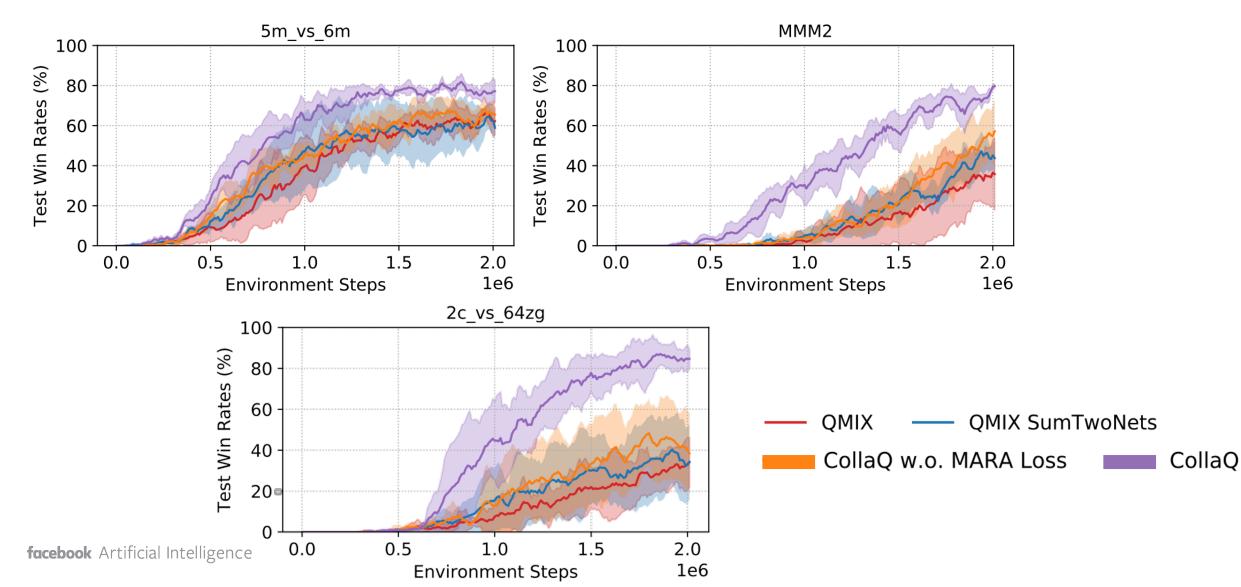
CollaQ performs well in ad hoc team play



Videos: https://sites.google.com/view/collaq-starcraft

Code: https://github.com/facebookresearch/CollaQ

Ablation Studies



Joint Policy Search for Multi-agent Collaboration with Imperfect Information

Yuandong Tian



Qucheng Gong

Tina Jiang

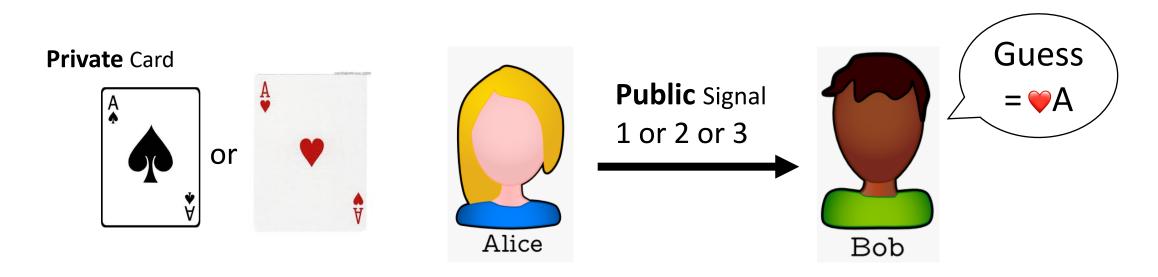
Facebook AI Research

facebook Artificial Intelligence

Code: https://github.com/facebookresearch/jps

NeurIPS 2020

An Illustrative Example



One possible solution (6 symmetric solutions):

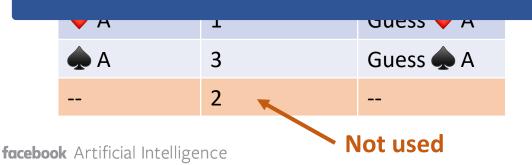
	Private card	Alice's Action	Bob's Action			
	₩ A	1	Guess 🧡 A			
	A	3	Guess 🌩 A			
		2				
faceboo	facebook Artificial Intelligence					

What if Allice and Bob never use signal 2,

but sending signal 2 come with additional rewards?

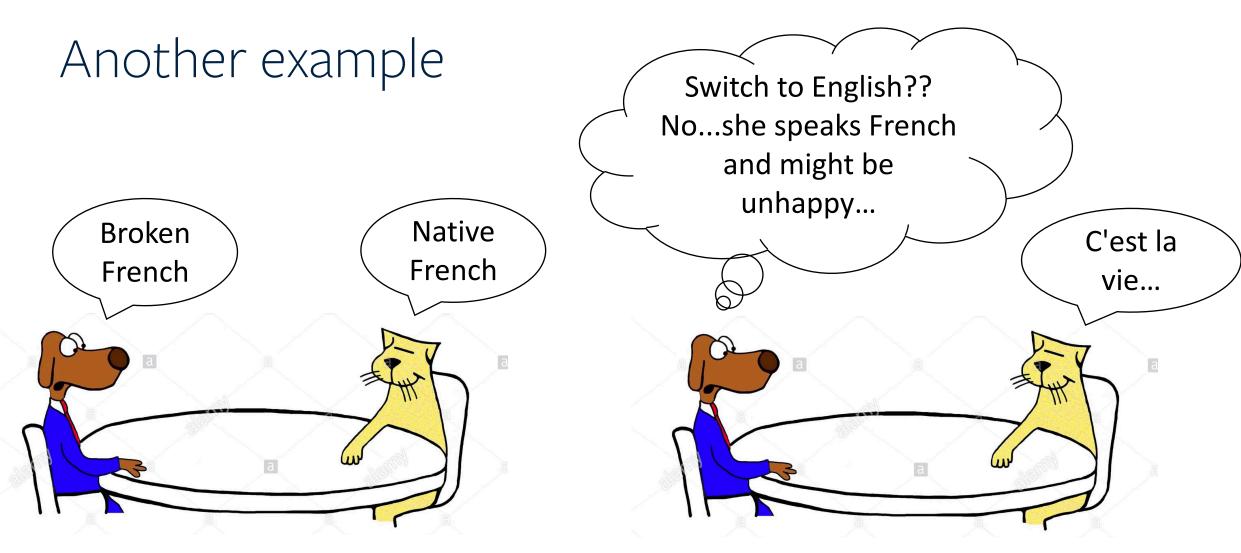
An Illustrative Example

For pure multi-agent collaborative games, A **unilateral** optimization of policy doesn't improve overall value.

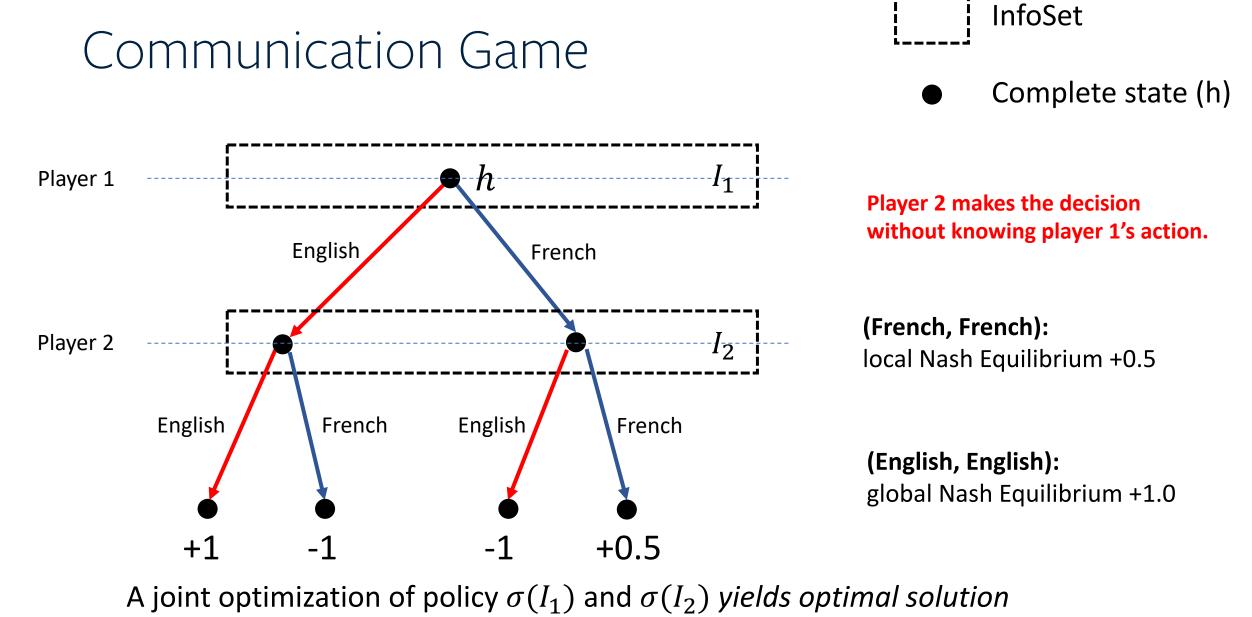


O

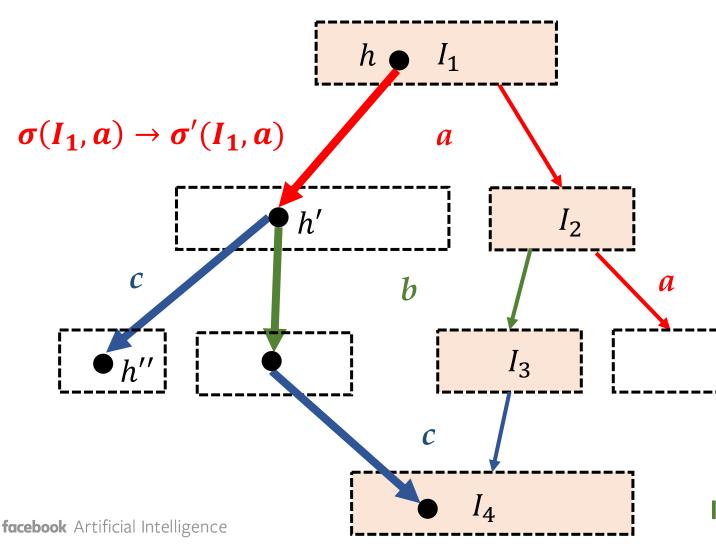
but sending signal 2 come with additional rewards?



A **unilateral** change of policy doesn't improve co-operative communication (many single-agent DRL approach improves by unilateral changes of agent policy)



Dependency between policies



 $\begin{array}{c} \textbf{active} \text{ infosets} \\ \sigma \rightarrow \sigma' \end{array}$

A change of $\sigma(I_1, a)$ affects **all** the reachability of down-stream states and/or infosets, no matter they are *active* or not.

A trajectory could re-enter into another active set and leave and re-enter again.

The value of an inactive infoset I_3 will change since the reachability to I_3 changes.

An infoset might contain both affected states and unaffected states.

Is there a good way to track value changes?

Density
$$\rho^{\sigma,\sigma'}(h) = \pi^{\sigma'}(h) \left[\sum_{a \in A(I)} \sigma'(I,a) v^{\sigma}(ha) - v^{\sigma}(h) \right]$$

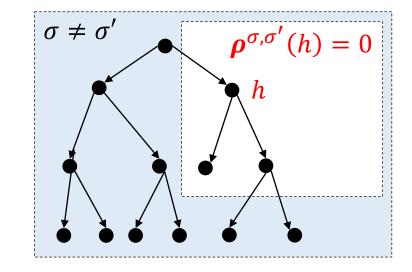
Two key properties:

(a) Its summation yields overall value changes

$$\bar{v}^{\sigma'} - \bar{v}^{\sigma} = \sum_{h \notin Z} \rho^{\sigma, \sigma'}(h)$$

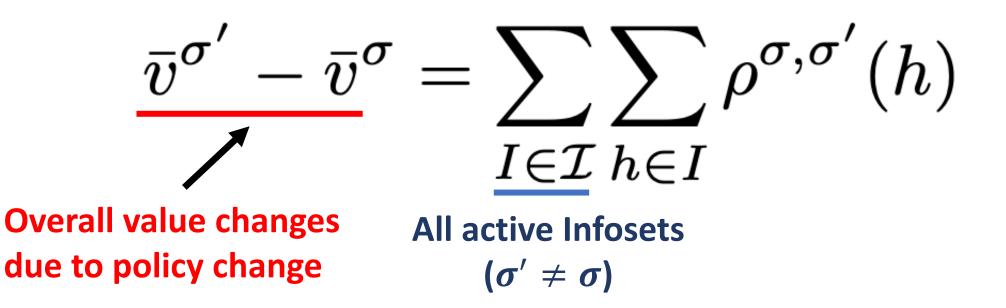
facebook Artificial Intelligence

(b) For regions whose policy doesn't change, it vanishes even if policy changes at downstream/upstream states.



Value Changes w.r.t Localized Policy Change

Main Theorem



Inactive Infosets doesn't matter!!

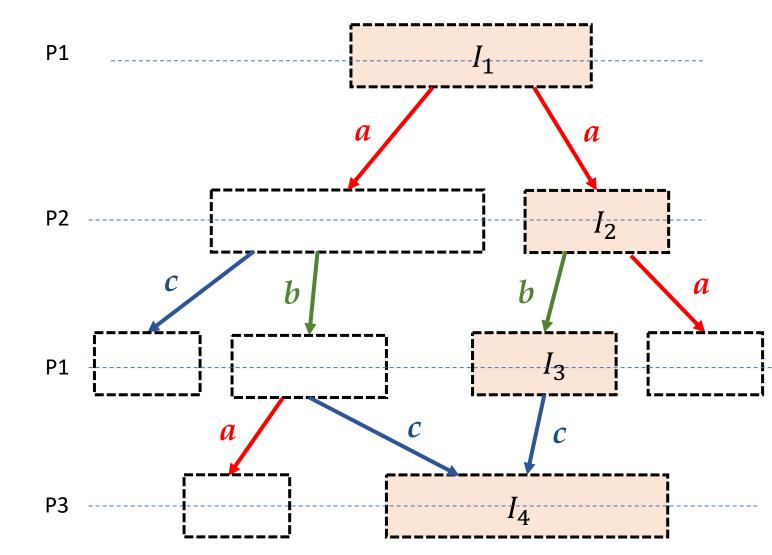
JPS (Joint Policy Search)

1. Initial infosets
$$I_{cand} = \{I_1\}$$

2. Pick $I \in I_{cand}$
3. Pick an action a
4. Set $\sigma'(I, b) = \delta(a = b)$
5. Compute $\rho^{\sigma, \sigma'}$
6. Set $I_{cand} = Succ(I, a)$

Repeat until maximal depth D is reached.

Backtrace (depth-first search)



Performance

	Comm (Def. 1)		Mini-Hanabi Simple Bidding (Def. 2) 2SuitBr				•	,			
	L=3	L=5	L = 6	L = 7	[15]	N = 4	N=8	N = 16	N=3	N = 4	N = 5
CFR1k [43]	0.89^{*}	0.85	0.85	0.85	9.11*	2.18^{*}	4.96^{*}	10.47	1.01*	1.62^{*}	2.60
CFR1k+JPS	1.00^{*}	1.00^{*}	1.00^{*}	1.00*	9.50^{*}	2.20^{*}	5.00^{*}	10.56^{*}	1.07^{*}	1.71^{*}	2.74^{*}
A2C [26]	0.60^{*}	0.57	0.51	0.02	8.20*	2.19	4.79	9.97	0.66	1.03	1.71
BAD [15]	1.00^{*}	0.88	0.50	0.29	9.47^{*}	2.23^{*}	4.99^{*}	9.81	0.53	0.98	1.31
Best Known	1.00	1.00	1.00	1.00	10	2.25	5.06	10.75	1.13	1.84	2.89
#States	633	34785	270273	2129793	53	241	1985	16129	4081	25576	147421
#Infosets	129	2049	8193	32769	45	61	249	1009	1021	5116	24571

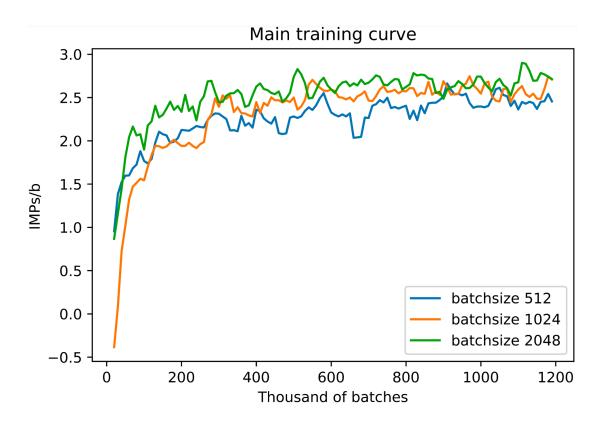
JPS can improve existing policies, and help it jump out of local optima

Contract Bridge Bidding

	N ♠A9743 ♥K8763		West	North	East	South 1♠
W None QJ952	◆A6 ◆7	E ♠Q82 ♥104	2♠¹ Pass	2NT ² 4 ♣ ³	Pass Pass	3 ♣ 4NT⁴
•109 •KQ10982		♦QJ85432	Pass Pass	5 ≜ ⁵ Pass	Pass Pass	7♠
		(1) Hearts and a minor. (2) Spade support, forcing to game. (3) Short clubs. (4) Keycard Blackwood. (5) Two key cards and the queen of spades, treating his fifth card as the equivalent of the queen.				

card

- 100 years of history ۲
- Imperfect Information •
- Collaborative + Competitive ٠
- Large State Space (5.4*10²⁸) ٠



A2C Self-play

Double-Dummy Evaluation against SoTA software

Methods	Vs. WBridge5 (1000 games) (IMPs/board)		
Previous SoTA (Rong et al, 2019)	+ 0.25 (on 64 games)		
Our A2C baseline	$+ 0.29 \pm 0.22$		
1% JPS (2 days)	$+ 0.44 \pm 0.20$		
5% JPS (2 days)	$+ 0.37 \pm 0.19$		
1% JPS (14 days)	+ 0.63 ± 0.22		

WBridge5: Champions of computer bridge tournament in 2005, 2007, 2008, 2016-2018

BeBold: Exploration <u>Beyond</u> the <u>Bo</u>undary of Explored Regions



Tianjun Zhang^{1,4}

Huazhe Xu^{1,4}

Xiaolong Wang^{1,2}

Yi Wu³

Kurt Keutzer¹

¹UC Berkeley

²UCSD

³Tsinghua University

Joseph E. Gonzalez¹

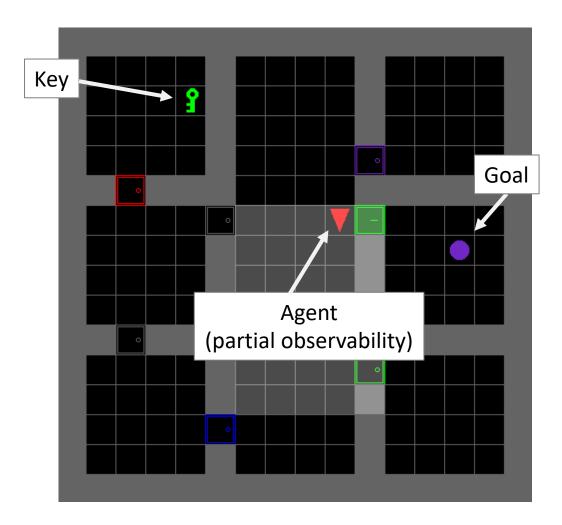
⁴FaceBook AI Research

Yuandong Tian⁴

facebook Artificial Intelligence

Imaged by Heritage Auctions, HA.com

Environment with Sparse Reward

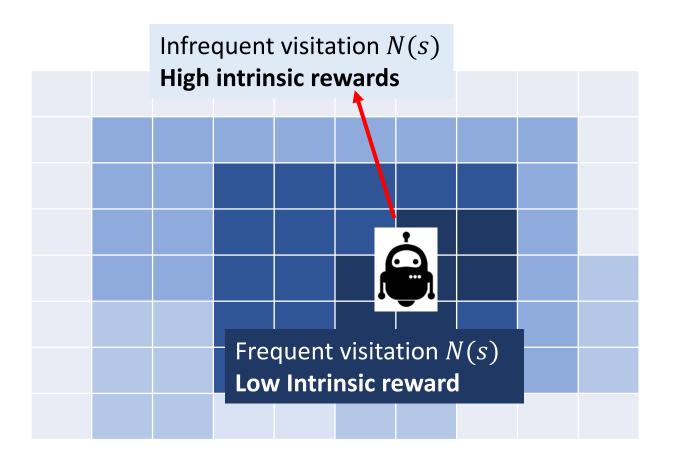


No external reward

when agent wonders around. when agent picks the key when agent opens all doors when agent opens the locked door ...

until the agent reaches the goal

Random Network Distillations (RND)

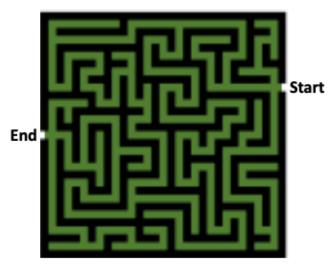


Low prediction error = High visitation counts

$$N(\mathbf{s}) \approx \frac{1}{\|\phi'(\mathbf{s}) - \phi(\mathbf{s})\|}$$

 $\phi' =$ student network (learning from teacher) ϕ = random fixed teacher network

Issues in RND



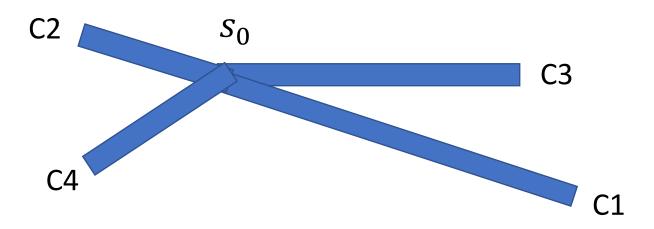
 RND assigns high IR (dark green) throughout the environment

 2. RND temporarily focuses on the upper right corner (yellow)

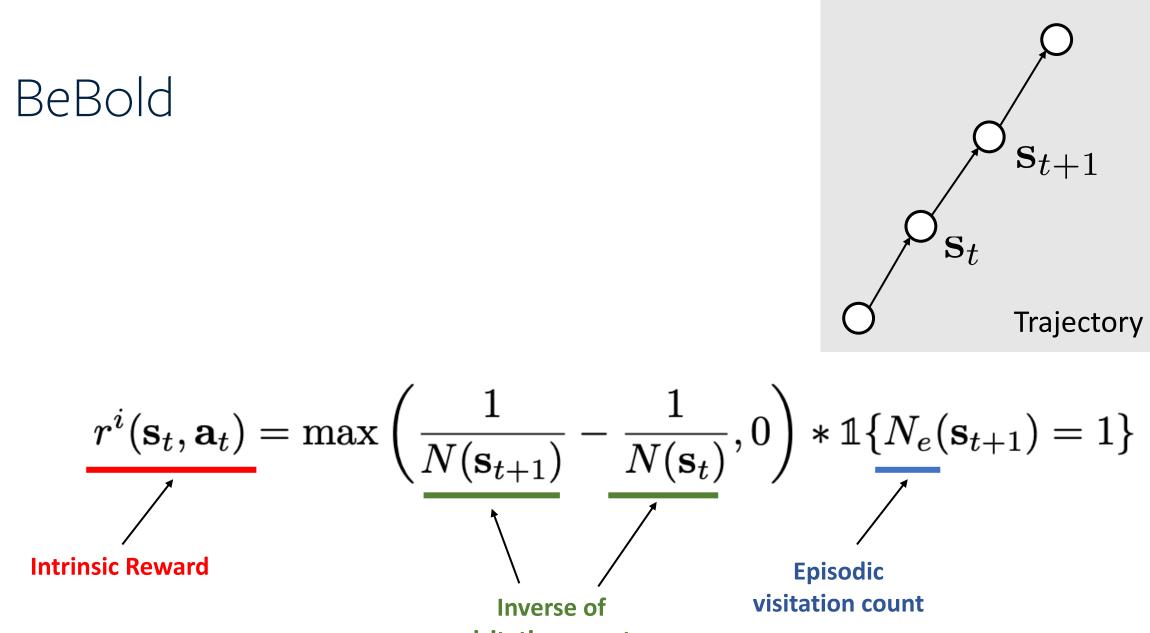
3. RND by chance starts exploring the bottom right corner heavily, resulting in the IR at top right higher than bottom right

4. RND re-explores the upper right and forgets the bottom right, gets trapped

Multi-Corridor Problems

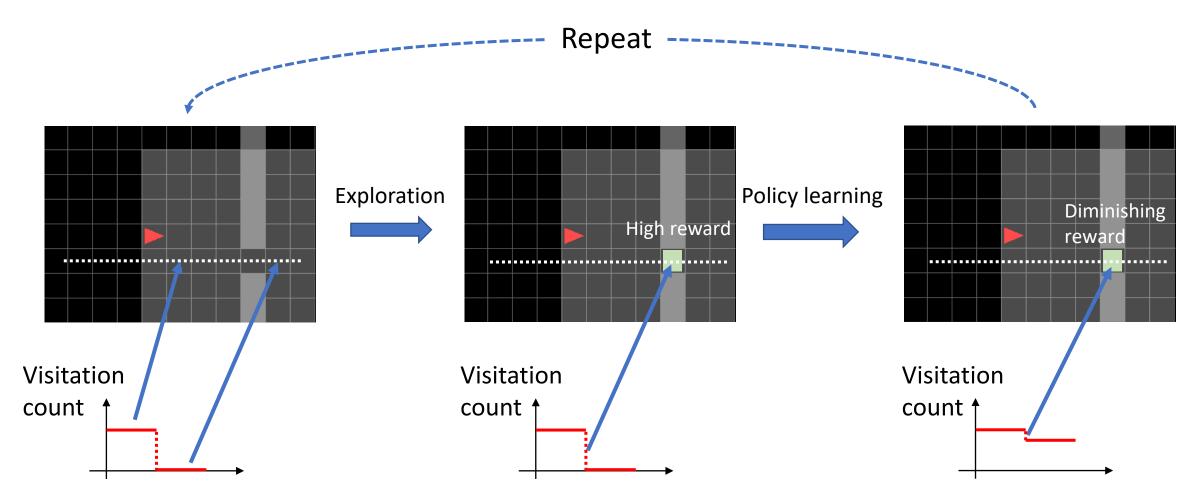


	C1	C2	C3	C4	Entropy
Length	40	10	30	10	_
Count-Based	$66K \pm 28K$	$8K \pm 8K$	$23K \pm 35K$	$13K \pm 18K$	1.06 ± 0.39
BeBold Tabular	26K + 2K	$28\mathrm{K}\pm8\mathrm{K}$	$25K \pm 6K$	$29K \pm 9K$	1.97 ± 0.02
RND	$0.2 \mathrm{K} \pm 0.2 \mathrm{K}$	$70K \pm 53K$	$0.2 \mathrm{K} \pm 0.07 \mathrm{K}$	$26K \pm 44K$	0.24 ± 0.28
BeBold	$27K \pm 6K$	$23K \pm 3K$	$31K \pm 12K$	$26K \pm 8K$	1.96 ± 0.05

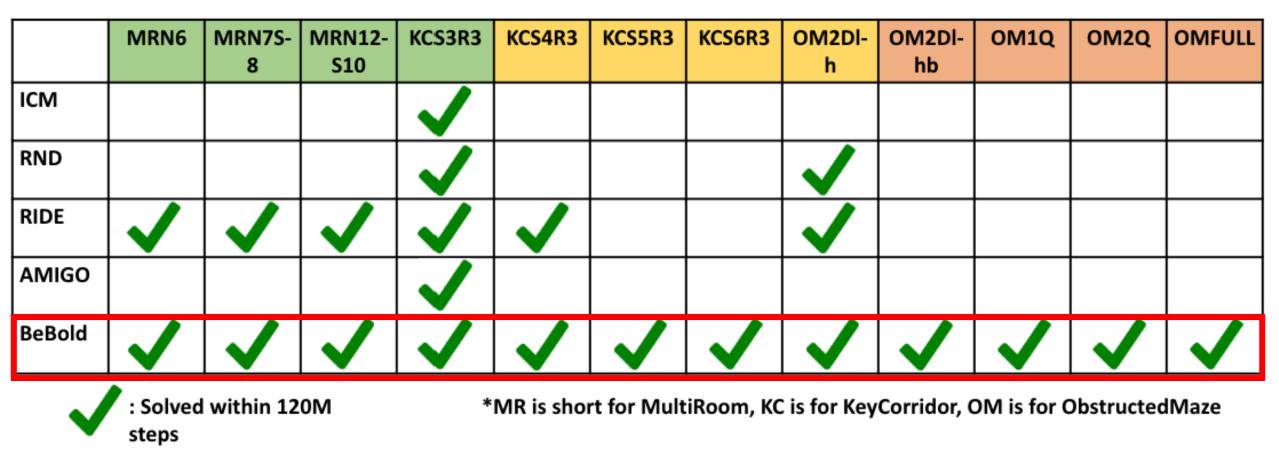


visitation counts

BeBold (<u>Beyond the Bo</u>undary of Explore<u>d</u> Regions)



MiniGrid

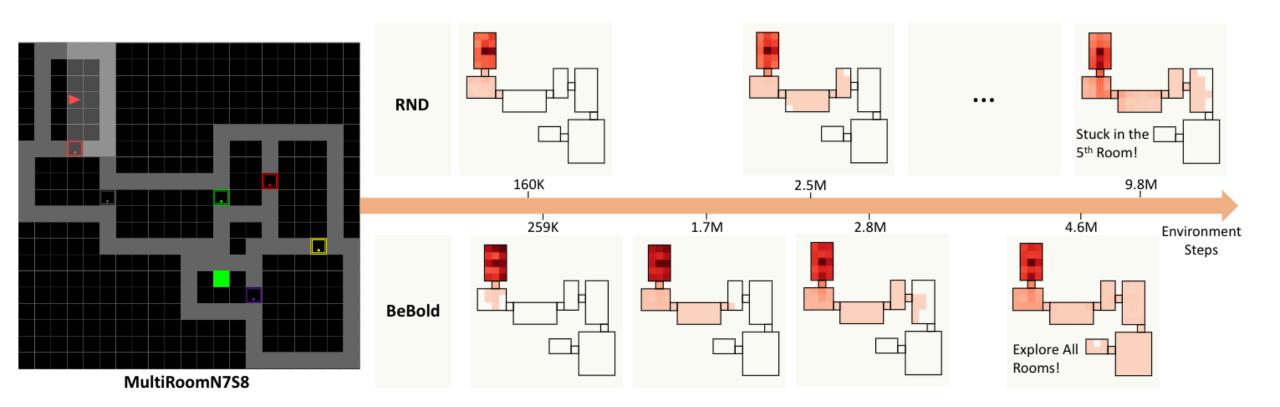


[Chevalier-Boisvert, Maxime, Lucas Willems, and Suman Pal. "Minimalistic gridworld environment for openai gym." GitHub repository (2018)]



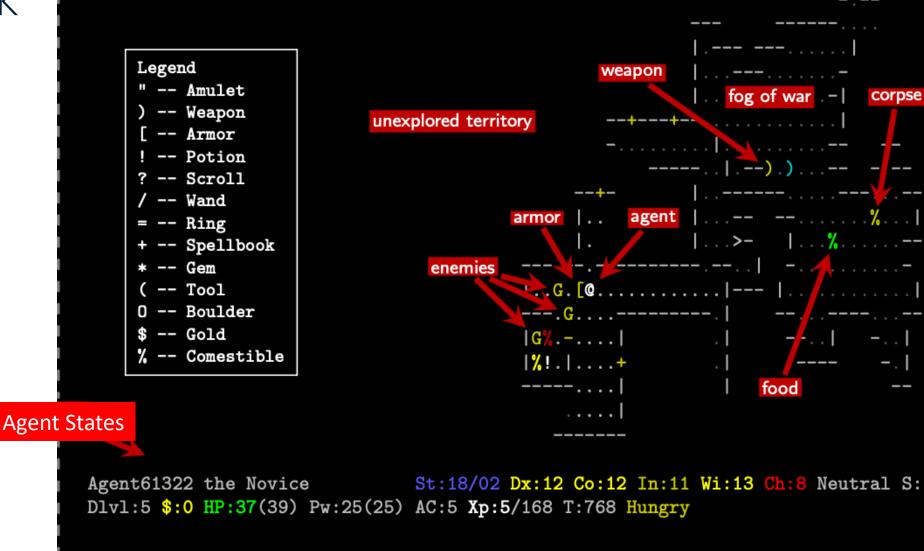
AMIGO: [Campero, Andres, et al. "Learning with AMIGo: Adversarially Motivated Intrinsic Goals." arXiv preprint arXiv:2006.12122 (2020)] RIDE: [Raileanu, Roberta, and Tim Rocktäschel. "RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments.", ICLR 2020] facebook Artificial Intelligence ICM: [Pathak, Deepak, et al. "Curiosity-driven exploration by self-supervised prediction." CVPR Workshops. 2017.]

Pure Exploration



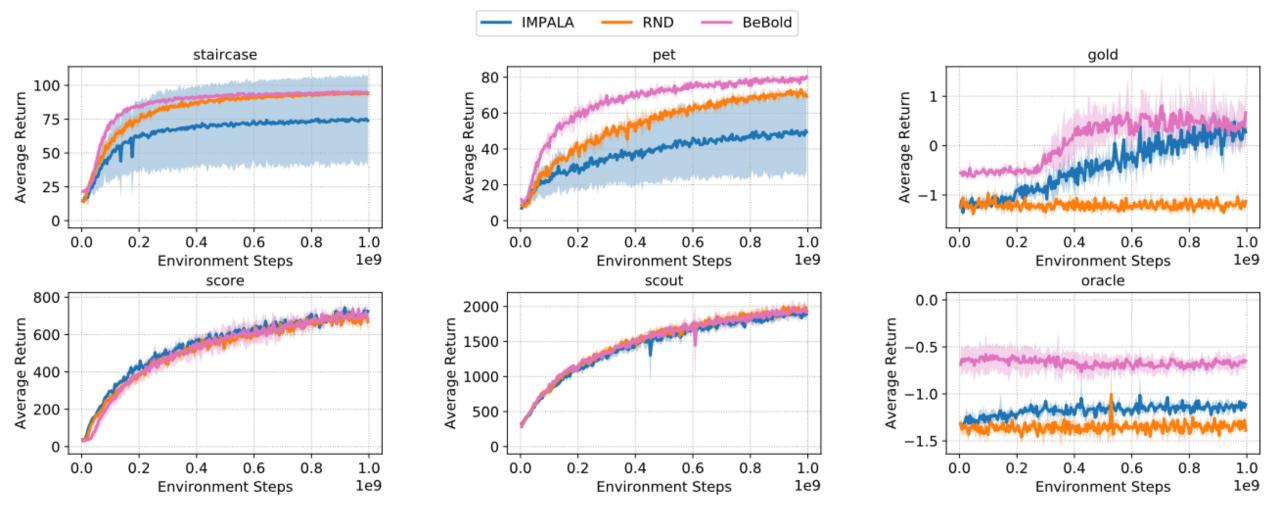
You kill the dwarf! Welcome to experience level 5.--More--

NetHack

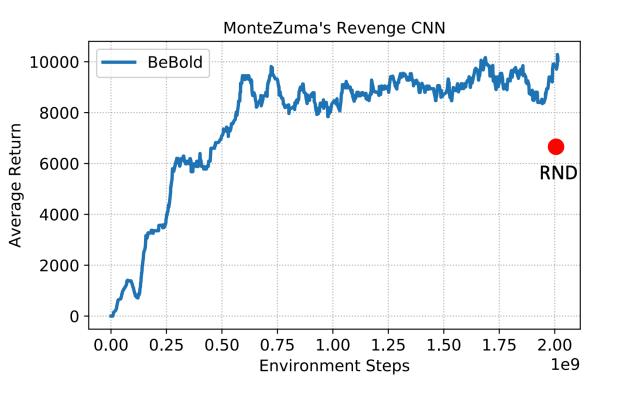


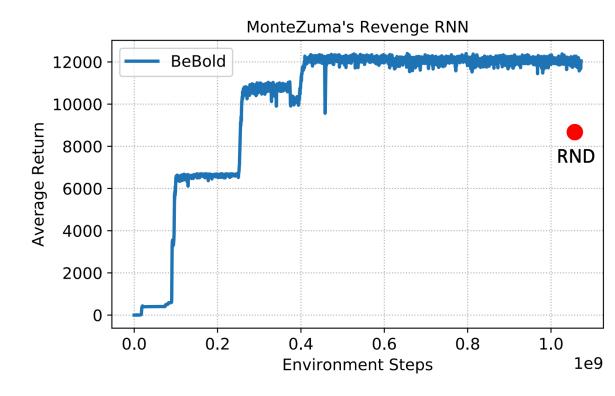
[Küttler, Heinrich, et al. "The NetHack Learning Environment." arXiv preprint arXiv:2006.13760 (2020)]

6 Tasks in NetHack



MonteZuma's Revenge





Future Work

• Super simple approach, super good performance.

- Theoretical Understanding?
 - Achieve the goal without exploring each state at least once.
 - Exploration in Factored MDP

