Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer

Yuandong Tian¹ Yiping Wang^{2,4} Beidi Chen^{1,3}

¹Meta AI (FAIR)

²University of Washington

³Carnegie Mellon University

⁴Zhejiang University

Simon Du²

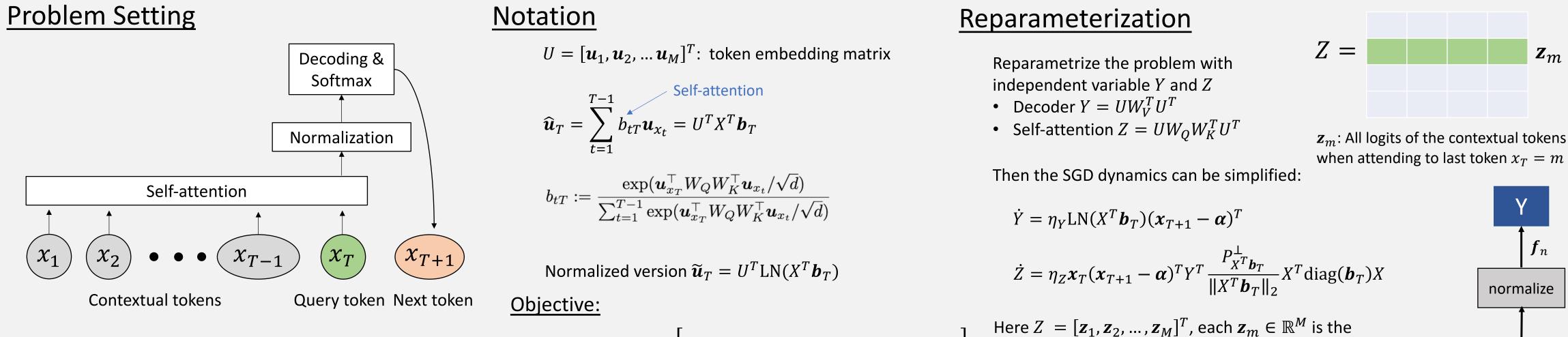
Meta Al

 \boldsymbol{z}_m

 \boldsymbol{f}_n

normalize

Ζ



 $\max_{W_K, W_Q, W_V, U} J = \mathbb{E}_D \left[\boldsymbol{u}_{x_{T+1}}^T W_V \widetilde{\boldsymbol{u}}_T - \log \sum_{i} \exp(\boldsymbol{u}_i^T W_V \widetilde{\boldsymbol{u}}_T) \right]$

The power of infinite sequence length $T \to +\infty$

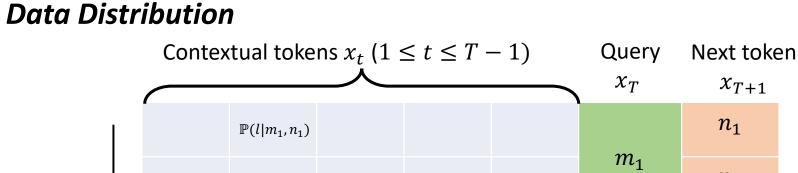
 $\dot{\boldsymbol{z}}_m = \eta_Z X^{\top}[i] \text{diag}(\boldsymbol{b}_T[i]) X[i] \frac{P_{X^{\top}[i]\boldsymbol{b}_T[i]}^{\perp}}{\|X^{\top}[i]\boldsymbol{b}_T[i]\|_2} Y(\boldsymbol{x}_{T+1}[i] - \boldsymbol{\alpha}[i])$

attention score for query/last token m:

$c_{l m,n} := \frac{T\mathbb{P}(l m,n)\exp(z_{ml})}{\sum_{l'}T\mathbb{P}(l' m,n)\exp(z_{ml'})} =$	$=rac{\mathbb{P}(l m,n)\exp(z_{ml})}{\sum_{l'}\mathbb{P}(l' m,n)\exp(z_{ml'})}=$	$=:\frac{\tilde{c}_{l\mid m,n}}{\sum_{l'}\tilde{c}_{l'\mid m,n}}$

Major Assumptions

- No positional encoding
- Sequence length $T \to +\infty$
- 3. Learning rate of decoder Y is larger than



self-attention layer Z ($\eta_Y \gg \eta_Z$) Sequence Classes

For other technical assumptions, please check the paper.

n_2 n_3 m_2 n_4

Assume $m = \psi(n)$, i.e., no next token shared among different last tokens

 $\mathbb{P}(l|m,n) = \mathbb{P}(l|n)$ is the conditional probability of token *l* given last token $x_T = m$ and $x_{T+1} = n$

Lemma 2. Given the event $\{x_T = m, x_{T+1} = n\}$, when $T \to +\infty$, we have $X^{\top} \boldsymbol{b}_T \to \boldsymbol{c}_{m,n}, \qquad X^{\top} \operatorname{diag}(\boldsymbol{b}_T) X \to \operatorname{diag}(\boldsymbol{c}_{m,n})$ where $c_{m,n} = [c_{1|m,n}, c_{2|m,n}, ..., c_{M|m,n}]^{\top} \in \mathbb{R}^{M}$. Note that $c_{m,n}^{\top} \mathbf{1} = 1$.

Define $f_n := f_{m,n} := c_{m,n} / \|c_{m,n}\|_2$ a ℓ_2 -normalized version of $c_{m,n}$.

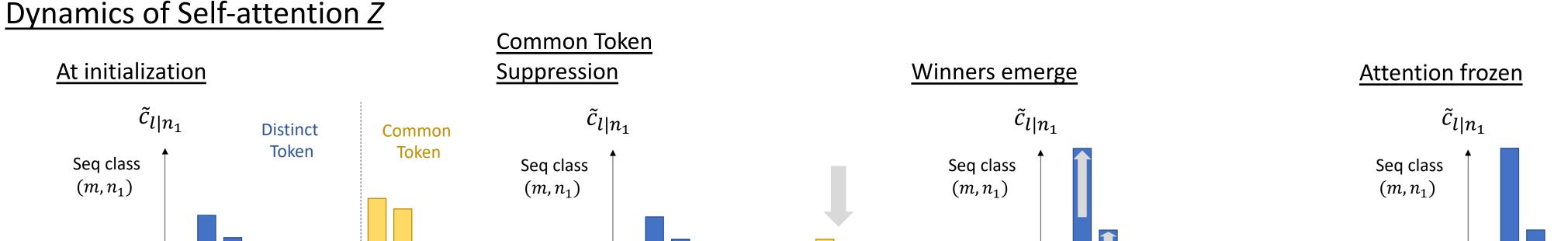
Theorem 1. If Assumption 2 holds, the initial condition Y(0) = 0, $M \gg 100$, η_Y satisfies $M^{-0.99} \ll \eta_Y < 1$, and each sequence class appears uniformly during training, then after $t \gg K^2$ steps of batch size 1 update, given event $x_{T+1}[i] = n$, the backpropagated gradient $\boldsymbol{g}[i] := Y(\boldsymbol{x}_{T+1}[i] - \boldsymbol{\alpha}[i])$ takes the following form:

$$\boldsymbol{g}[i] = \gamma \left(\iota_n \boldsymbol{f}_n - \sum_{n' \neq n} \beta_{nn'} \boldsymbol{f}_{n'} \right)$$
(9)

Here the coefficients $\iota_n(t)$, $\beta_{nn'}(t)$ and $\gamma(t)$ are defined in Appendix with the following properties:

• (a)
$$\xi_n(t) := \gamma(t) \sum_{n \neq n'} \beta_{nn'}(t) f_n^{\top}(t) f_{n'}(t) > 0$$
 for any $n \in [K]$ and any t;

• (b) The speed control coefficient
$$\gamma(t) > 0$$
 satisfies $\gamma(t) = O(\eta_Y t/K)$ when $t \le \frac{\ln(M) \cdot K}{\eta_Y}$
and $\gamma(t) = O\left(\frac{K \ln(\eta_Y t/K)}{\eta_Y t}\right)$ when $t \ge \frac{2(1+\delta') \ln(M) \cdot K}{\eta_Y}$ with $\delta' = \Theta(\frac{\ln \ln M}{\ln M})$.

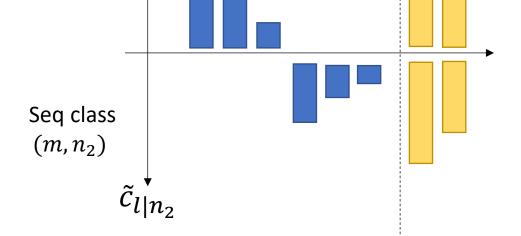


Dynamics of Decoder Y

Since $\eta_Y \gg \eta_Z$, we analyze the dynamics of decoder Y first, treating the output of Z as constant.

$$\dot{Y} = \eta_Y \boldsymbol{f}_n (\boldsymbol{e}_n - \boldsymbol{\alpha}_n)^\top, \quad \boldsymbol{\alpha}_n = \frac{\exp(Y^\top \boldsymbol{f}_n)}{\mathbf{1}^\top \exp(Y^\top \boldsymbol{f}_n)}$$

K: number of possible next tokens to be predicted



(a) $\dot{z_{ml}} < 0$, for common token l(b) $\dot{z_{ml}} > 0$, for distinct token l(c) $z_{ml}(t)$ grows faster with larger $\mathbb{P}(l|m,n)$

Theorem 3

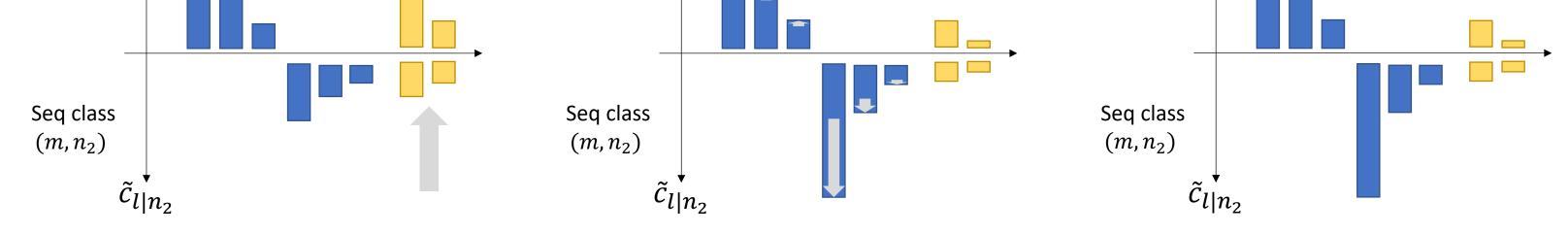
Relative gain
$$r_{l/l'|n}(t) \coloneqq \frac{\tilde{c}_{l|n}^2(t)}{\tilde{c}_{l'|n}^2(t)} - 1$$
 has a close form:

 $r_{l/l'|n}(t) = r_{l/l'|n}(0)\chi_l(t)$

If l_0 is the dominant token: $r_{l_0/l|n}(0) > 0$ for all $l \neq l_0$ then

$$e^{2f_{nl_0}^2(0)B_n(t)} \le \chi_{l_0}(t) \le e^{2B_n(t)}$$

where $B_n(t) \ge 0$ is a monotonously increasing function with $B_n(0) = 0$.

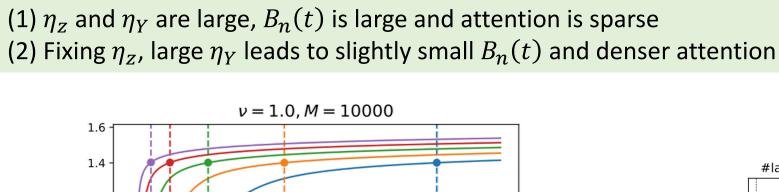


iter-1500 iter-500 iter-0 iter-500 iter-1000 iter-1500

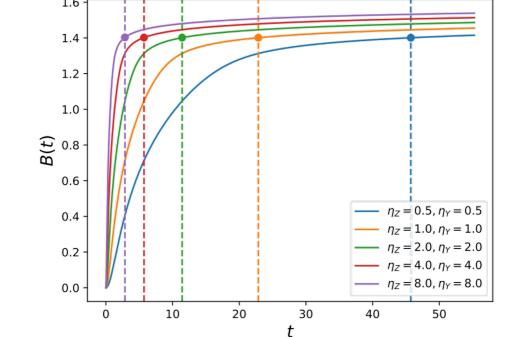
Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Transformer trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.



Figure 6: Average entropy of c_n (Eqn. [5]) on distinct tokens versus learning rate ratio η_Y/η_Z with more last tokens M/next tokens K. We report mean values over 10 seeds and standard derivation of the mean.



When $t \ge t_0 = O\left(\frac{2K \ln M}{n_v}\right)$, $B_n(t) = O(\ln \ln t)$



 $B_n(t) \sim \ln\left(C_0 + 2K\frac{\eta_z}{\eta_Y}\ln^2\left(\frac{M\eta_Y t}{K}\right)\right)$

When training starts, $B_n(t) = O(\ln t)$

Theorem 4. When $t \to +\infty$,

Attention **scanning**:

Attention snapping: