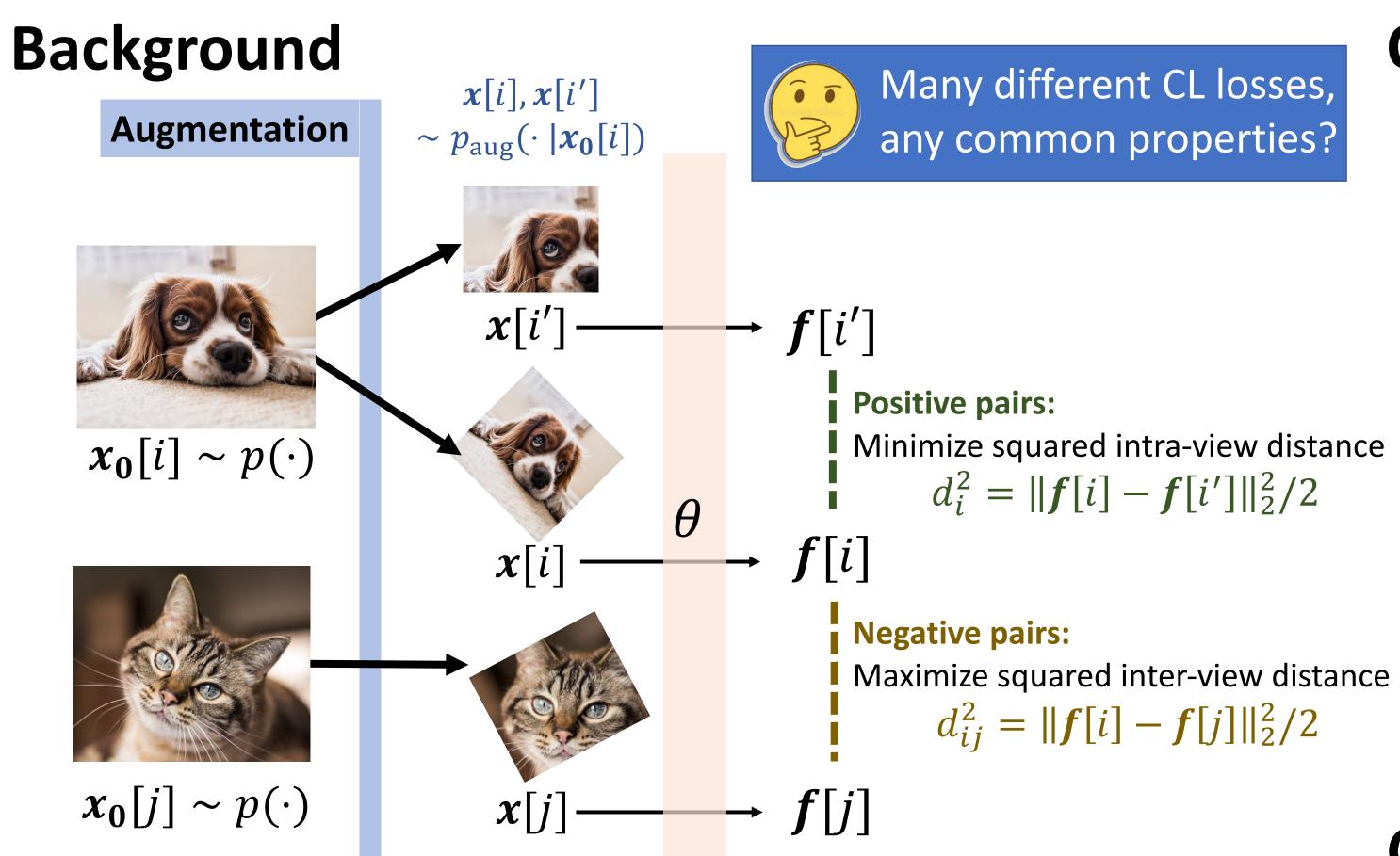
Understanding Contrastive Learning via Coordinate-wise Optimization

Yuandong Tian yuandong@meta.com



Proposed Unified Framework

General CL loss (ϕ, ψ are monotonous increasing functions)

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{\phi}, \boldsymbol{\psi}}(\boldsymbol{\theta}) \coloneqq \sum_{i=1}^{N} \boldsymbol{\phi} \left(\sum_{j \neq i} \boldsymbol{\psi}(d_i^2 - d_i^2) \right)$$

$$\mathcal{L}_{nce} \coloneqq -\tau \sum_{i=1}^{N} \log \frac{\mathrm{e}^{-d_i^2/\tau}}{\epsilon \,\mathrm{e}^{-d_i^2/\tau} + \sum_{j \neq i} \mathrm{e}^{-d_{ij}^2/\tau}} = \tau \sum_{i=1}^{N} \log \left(\epsilon + \sum_{j \neq i} \exp\left(\frac{d_i^2 - d_{ij}^2}{\tau}\right)\right)$$

Here $\phi(x) = \tau \log(\epsilon + x)$ and $\psi(x) = \exp(x/\tau)$

Proposed: α -CL

Why we are stuck with coordinate-wise optimization?

Optimize network parameter $\boldsymbol{\theta}$ using gradient ascent of the energy function \mathcal{E} :

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\mathsf{sg}(\boldsymbol{\alpha}_t)}(\boldsymbol{\theta}_t)$$

Pairwise importance $\alpha_t = \alpha(\boldsymbol{\theta}_t)$

The pairwise importance α can be 1. optimized by a separate loss function, or **2.** *directly* specified (*α*-CL-direct)

Common piece of various CL loss functions

First we can prove $\frac{\partial \mathcal{L}_{\phi,\psi}}{\partial \theta} = -\frac{\partial \mathcal{E}_{\alpha}}{\partial \theta} |_{\alpha = \alpha(\theta)}$

for the energy \mathcal{E}_{α} defined as the *trace* of *contrastive covariance* \mathbb{C}_{α} :

$$\mathcal{E}_{\alpha}(\boldsymbol{\theta}) \coloneqq \frac{1}{2} \operatorname{tr} \mathbb{C}_{\alpha}[f_{\boldsymbol{\theta}}(\boldsymbol{x})]$$

where the **contrastive covariance** is defined as

$$\mathbb{C}_{\alpha}[f] \coloneqq \sum_{i,j} \alpha_{ij}[(f[i] - f[j])(f[i] - f[j])^T - (f[i] - f[i'])(f[i] - f[i'])^T]$$
Here the **pairwise importance** $\alpha_{ij} \coloneqq \phi'(\xi_i)\psi'(d_i^2 - d_{ij}^2) \ge 0$,

Here the **pairwise importance**
$$\alpha_{ij} \coloneqq \phi'(\xi_i) \psi'(\psi)$$

where $\xi_i \coloneqq \sum_{j \neq i} \psi(d_i^2 - d_{ij}^2)$

α as an adversarial player

[Theorem] If $\psi(x) = e^{x/\tau}$, then $\alpha(\theta) = \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\theta) - \mathcal{R}(\alpha)$

where $\mathcal{A} \coloneqq \{ \alpha: \forall i, \sum_{j \neq i} \alpha_{ij} = \tau^{-1} \xi_i \phi'(\xi_i), \alpha_{ij} \ge 0 \}$

and entropy regularization term $\mathcal{R}(\alpha) \coloneqq \tau \sum_{i=1}^{N} H(\alpha_{i})$

Example For infoNCE:

 $\alpha_{ij}(\boldsymbol{\theta}) = \frac{\exp(-d_{ij}^2/\tau)}{\epsilon \exp(-d_i^2/\tau) + \sum_{i \neq i} \exp(-d_i^2/\tau)}$

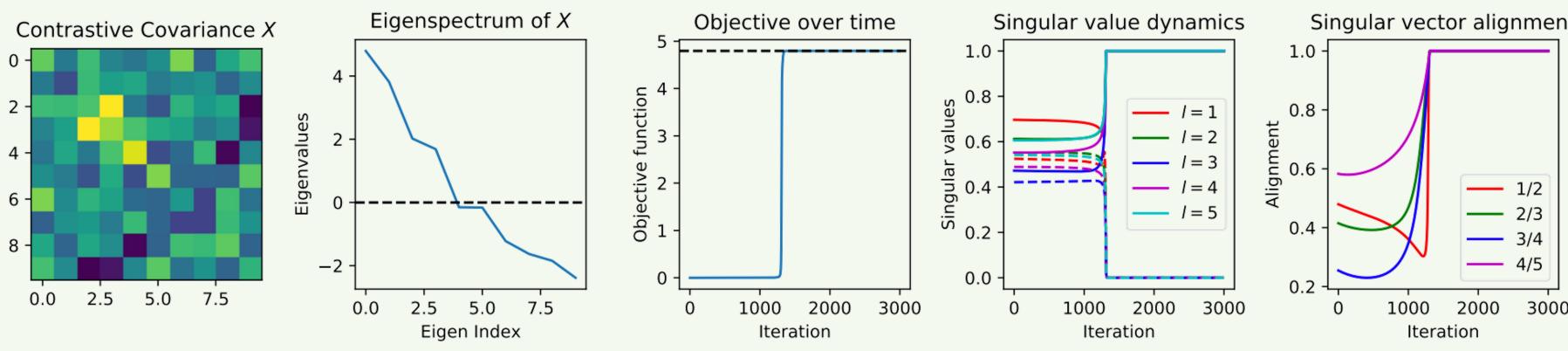
Larger α_{ij} on small $d_{ij} \rightarrow$ distinct samples with similar representations

Theoretical Properties when α is fixed

Deep linear network

If $f_{\theta}(x) = W_L W_{L-1} \dots W_1 x$, then almost all local optima are global, and CL becomes Principal Component Analysis (PCA).

[Theorem] Let $X_{\alpha} \coloneqq \mathbb{C}_{\alpha}[x]$. If $\lambda_{\max}(X_{\alpha}) > 0$, then for any local maximum $\theta = 0$ $\{W_L, W_{L-1}, \dots, W_1\}$ whose $W_{>1}^T W_{>1}$ has distinct maximal eigenvalue, then $\boldsymbol{\theta}$ is aligned rank-1 (i.e., $W_l = \boldsymbol{v}_l \boldsymbol{v}_{l-1}^T$), \boldsymbol{v}_0 is the unit eigenvector for $\lambda_{\max}(X_{\alpha})$. • $\boldsymbol{\theta}$ is globally optimal with objective $2\mathcal{E}^* = \lambda_{\max}(X_{\alpha})$.



Nonlinear network

Many interesting properties. Detailed in the paper and follow-up works (Please check Workshop on SSL, Theory and Practice on Dec. 3)

$$\frac{1}{\exp\left(-\frac{d_{ij}^2}{\tau}/\tau\right)}$$

$$\boldsymbol{\theta}_{t+1} \coloneqq$$

Max-player θ Learns the representation to maximize constrativeness.

Min-player α Find distinct sample pairs that share similar representation (i.e., hard negative pairs) The pairwise importance α incorporates the effects of ϕ and $\psi_{...}$

Contrastive Loss

InfoNCE (Oord et al, 2018) MINE (Belghazi et al, 2018) Triplet (Schroff et al., 2015) Soft Triplet (Tian et al., 2020c) N+1 Tuplet (Sohn, 2016) Lifted Structured (Oh Song et a Modified Triplet (Eqn. 10 in Co Triplet Contrastive (Eqn. 2 in J

Different loss functions (ϕ, ψ) corresponds to the same energy function \mathcal{E} How the min player $\alpha = \alpha(\theta)$ operates is different.

Experimental Results: α -CL

Use ResNet18 backbone, and set different α

	<i>CIFAR-10</i>			STL-10		
	100 epochs	300 epochs	500 epochs	100 epochs	300 epochs	500 epochs
$\mathcal{L}_{quadratic}$	63.59 ± 2.53	73.02 ± 0.80	73.58 ± 0.82	55.59 ± 4.00	64.97 ± 1.45	67.28 ± 1.21
\mathcal{L}_{nce}	84.06 ± 0.30	87.63 ± 0.13	$\mid 87.86 \pm 0.12 \mid$	78.46 ± 0.24	82.49 ± 0.26	83.70 ± 0.12
backprop $\alpha(\boldsymbol{\theta})$	83.42 ± 0.25	87.18 ± 0.19	87.48 ± 0.21	77.88 ± 0.17	81.86 ± 0.30	83.19 ± 0.16
α -CL- r_H	84.27 ± 0.24	87.75 ± 0.25	87.92 ± 0.24	78.53 ± 0.35	82.62 ± 0.15	83.74 ± 0.18
α -CL- r_{γ}	83.72 ± 0.19	87.51 ± 0.11	87.69 ± 0.09	78.22 ± 0.28	82.19 ± 0.52	83.47 ± 0.34
α -CL- r_s	84.72 ± 0.10	86.62 ± 0.17	86.74 ± 0.15	76.95 ± 1.06	80.64 ± 0.77	81.65 ± 0.59
α -CL-direct	85.09 ± 0.13	88.00 ± 0.12	88.16 ± 0.12	79.38 ± 0.16	82.99 ± 0.15	84.06 ± 0.24

More datasets

ore datasets				α -CL-direct:
		CIFAR-100		n
	100 epochs	300 epochs	500 epochs	$\exp\left(-\frac{d_{ij}^{P}}{d_{ij}}\right)$
\mathcal{L}_{nce}	55.696 ± 0.368	59.706 ± 0.360	59.892 ± 0.340	$\alpha \cdots := \frac{\tau \cdot \tau}{\tau}$
α -CL-direct	$\mid\mid 57.144 \pm 0.150$	60.110 ± 0.187	60.330 ± 0.194	$ \begin{array}{c} \alpha_{ij} \\ \end{array} \\ \sum \\ \end{array} \\ \left(\begin{array}{c} d^p_{ij} \\ \end{array} \right) $
				$\sum_{i\neq j} \exp\left(-\frac{c_j}{\tau}\right)$

Backbone = ResNet50

DatasetMethod100 epochs300 epochs	500 epochs
CIFAR-10 \mathcal{L}_{nce} 86.388 \pm 0.157 89.974 \pm 0.138	90.194 ± 0.232
α -CL-direct 87.406 \pm 0.227 90.228 \pm 0.185	$\textbf{90.366} \pm \textbf{0.209}$
CIFAR-100 \mathcal{L}_{nce} 60.162 ± 0.482 65.400 ± 0.310	65.532 ± 0.297
$\alpha - \text{CL-direct} \mathbf{62.650 \pm 0.181} \mathbf{65.630 \pm 0.263}$	65.636 ± 0.269
STL-10 \mathcal{L}_{nce} 81.635 ± 0.244 86.570 ± 0.174	87.900 ± 0.222
α -CL-direct 82.850 \pm 0.171 86.870 \pm 0.178	87.653 ± 0.175

Meta Al

Selected as Oral

[Theorem] Minimizing $\mathcal{L}_{\phi,\psi} \Leftrightarrow$ Coordinate-wise optimization:

 $\alpha_t \coloneqq \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}_t) - \mathcal{R}(\alpha)$ $= \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\alpha_t}(\boldsymbol{\theta}_t)$

	$\boldsymbol{\phi}(\boldsymbol{x})$	$\boldsymbol{\psi}(\boldsymbol{x})$	
	$\tau \log(\epsilon + x)$	$e^{x/\tau}$	
	$\log(x)$	e^{x}	
	X	$[x + \epsilon]_+$	
	$\tau \log(1+x)$	$e^{x/\tau+\epsilon}$	
	$\log(1+x)$	e^{x}	
al., 2016)	$[\log(x)]_{+}^{2}$	$e^{x+\epsilon}$	
oria et al., 2020))	X	sigmoid(<i>cx</i>)	
Ji et al. <i>,</i> 2021)	Linear	Linear	

 α -CL- r_H : Entropy regularizer α -CL- r_{γ} : Inverse regularizer α -CL- r_s : Square regularizer $\ \ \alpha$ -CL-direct: Directly setting α .

(p = 4)