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General CL loss (𝜙,𝜓 are monotonous increasing functions)
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Max-player 𝜽
Learns the representation to maximize constrativeness.

Min-player 𝜶
Find distinct sample pairs that share similar representation 

(i.e., hard negative pairs)
The pairwise importance 𝛼 incorporates the effects of 𝜙 and 𝜓. 

[Theorem] Minimizing ℒ!,# ó Coordinate-wise optimization: 

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! − ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ", 𝜽!

𝜽!%& = 𝜽! + 𝜂∇𝜽ℰ() ", (𝜽!)

Pairwise importance 𝛼$ = 𝛼(𝜽$)

Optimize network parameter 𝜽 using 
gradient ascent of the energy function ℰ:  

The pairwise importance 𝛼 can be 
1. optimized by a separate loss function, or
2. directly specified (𝜶-CL-direct)

Backbone = ResNet50

More datasets

Background

Proposed Unified Framework

Many different CL losses, 
any common properties?  

Common piece of various CL loss functions

Proposed: 𝜶-CL Experimental Results: 𝜶-CLTheoretical Properties when 𝜶 is fixed

[Theorem] If 𝜓 𝑥 = 𝑒!/#, then 𝛼 𝜽 = argmin
%∈𝒜

ℰ% 𝜽 − ℛ 𝛼

and entropy regularization term  ℛ 𝛼 ≔ 𝜏∑!"#$ 𝐻(𝛼!⋅)

where𝒜 ≔ 𝛼: ∀𝑖, ∑&'! 𝛼!& = 𝜏(#𝜉!𝜙) 𝜉! , 𝛼!& ≥ 0

Larger 𝛼!& on small 𝒅𝒊𝒋 à distinct samples with similar representations

Positive pairs:
Minimize squared intra-view distance 

𝑑!, = 𝒇 𝑖 − 𝒇 𝑖) ,
,/2

Negative pairs:
Maximize squared inter-view distance 

𝑑!&, = 𝒇 𝑖 − 𝒇 𝑗 ,
,/2

𝒇[𝑖]

𝒇[𝑖′]

𝒇[𝑗]

Augmentation

𝒙𝟎[𝑖] ∼ 𝑝(⋅)

𝒙 𝑖 , 𝒙 𝑖!
∼ 𝑝"#$(⋅ |𝒙𝟎[𝑖])

𝒙[𝑖′]

𝒙[𝑖]

𝒙𝟎[𝑗] ∼ 𝑝(⋅) 𝒙[𝑗] 𝜶 as an adversarial player

Example For infoNCE:

where the contrastive covariance is defined as
ℂ& 𝒇 ≔/

',)

𝛼') 𝒇[𝑖] − 𝒇[𝑗] 𝒇 𝑖 − 𝒇[𝑗] * − 𝒇[𝑖] − 𝒇[𝑖!] 𝒇[𝑖] − 𝒇[𝑖!] *

for the energy ℰ% defined as the trace of contrastive covariance ℂ%:

ℰ% 𝜽 ≔
1
2
tr ℂ%[𝒇𝜽 𝒙 ]

𝜃

Why we are stuck with 
coordinate-wise optimization?

/ℒ5,6
/𝜽

= − /ℰ7
/𝜽
|121(𝜽)First we can prove

Here the pairwise importance 𝛼!& ≔ 𝜙) 𝜉! 𝜓) 𝑑!, − 𝑑!&, ≥ 0, 
where 𝜉! ≔ ∑&'!𝜓(𝑑!, − 𝑑!&, )

[Theorem] Let 𝑋% ≔ ℂ% 𝒙 . If 𝜆&'( 𝑋% > 0, then for any local maximum 𝜽 =
𝑊) ,𝑊)*+, … ,𝑊+ whose 𝑊,+

- 𝑊,+ has distinct maximal eigenvalue, then
• 𝜽 is aligned rank-1 (i.e., 𝑊. = 𝒗.𝒗.*+- ), 𝒗/ is the unit eigenvector for 𝜆&'( 𝑋% .
• 𝜽 is globally optimal with objective 2ℰ∗ = 𝜆&'( 𝑋% .

If 𝒇𝜽(𝒙) = 𝑊)𝑊)*+…𝑊+𝒙, then almost all local optima are global, and CL 
becomes Principal Component Analysis (PCA). 

Deep linear network

Nonlinear network
Many interesting properties. Detailed in the paper and follow-up works 
(Please check Workshop on SSL, Theory and Practice on Dec. 3)

Use ResNet18 backbone, and set different 𝛼

Different loss functions 𝜙,𝜓 corresponds to the same energy function ℰ
How the min player 𝜶 = 𝜶(𝜽) operates is different.

𝛼-CL-𝑟+: Entropy regularizer
𝛼-CL-𝑟,: Inverse regularizer
𝛼-CL-𝑟-: Square regularizer
𝛼-CL-direct: Directly setting 𝛼.

𝛼-CL-direct:
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Here 𝜙 𝑥 = 𝜏 log(𝜖 + 𝑥) and 𝜓 𝑥 = exp 𝑥/𝜏

For infoNCE:

𝛼!&(𝜽) =
exp −𝑑!&, /𝜏

𝜖 exp(−𝑑!,/𝜏) + ∑&'! exp −𝑑!&, /𝜏

Contrastive Loss 𝝓(𝒙) 𝝍(𝒙)
InfoNCE (Oord et al, 2018) 𝜏 log(𝜖 + 𝑥) 𝑒!/#

MINE (Belghazi et al, 2018) log(𝑥) 𝑒!

Triplet (Schroff et al., 2015) 𝑥 𝑥 + 𝜖 2
Soft Triplet (Tian et al., 2020c) 𝜏 log(1 + 𝑥) 𝑒!/#23

N+1 Tuplet (Sohn, 2016) log(1 + 𝑥) 𝑒!

Lifted Structured (Oh Song et al., 2016) [log(𝑥)]24 𝑒!23

Modified Triplet (Eqn. 10 in Coria et al., 2020)) 𝑥 sigmoid(𝑐𝑥)
Triplet Contrastive (Eqn. 2 in Ji et al., 2021) Linear Linear 


