Understanding Contrastive Learning via Coordinate-wise Optimization

Yuandong Tian yuandong@meta.com

Proposed Unified Framework

General CL loss (ϕ , ψ are monotonous increasing functions)

$$
\min_{\theta} \mathcal{L}_{\phi,\psi}(\theta) \coloneqq \sum_{i=1}^{N} \phi \left(\sum_{j \neq i} \psi(d_i^2 - d_i^2) \right)
$$

$$
\mathcal{L}_{nce} := -\tau \sum_{i=1}^{N} \log \frac{e^{-d_i^2/\tau}}{\epsilon e^{-d_i^2/\tau} + \sum_{j \neq i} e^{-d_{ij}^2/\tau}} = \tau \sum_{i=1}^{N} \log \left(\epsilon + \sum_{j \neq i} \epsilon \right)
$$

Here $\phi(x) = \tau \log(\epsilon + x)$ and $\psi(x) = \exp(x/\tau)$

Proposed: α **-CL**

Why we are stuck with coordinate-wise optimization?

Optimize network parameter $\boldsymbol{\theta}$ using gradient ascent of the energy function \mathcal{E} :

$$
\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \xi_{\text{sg}(\alpha_t)}(\boldsymbol{\theta}_t)
$$

Pairwise importance $\alpha_t = \alpha(\boldsymbol{\theta}_t)$

The pairwise importance α can be 1. optimized by a separate loss function, or 2. *directly* specified $(\alpha$ -CL-direct)

Common piece of various CL loss functions

First we can prove $\frac{\partial \mathcal{L}_{\phi,\psi}}{\partial \theta} = -\frac{\partial \mathcal{E}_{\alpha}}{\partial \theta} \big|_{\alpha = \alpha(\theta)}$

for the energy ε_{α} defined as the trace of **contrastive covariance** \mathbb{C}_{α} :

$$
\mathcal{E}_{\alpha}(\boldsymbol{\theta}) := \frac{1}{2} \operatorname{tr} \mathbb{C}_{\alpha} [f_{\boldsymbol{\theta}}(\boldsymbol{x})]
$$

where the **contrastive covariance** is defined as
\n
$$
\mathbb{C}_{\alpha}[f] \coloneqq \sum_{i,j} \alpha_{ij} [(f[i] - f[j]) (f[i] - f[j])^T - (f[i] - f[i']) (f[i] - f[i'])^T]
$$
\nHere the **pairwise importance** $\alpha_{ij} \coloneqq \phi'(\xi_i) \psi'(d_i^2 - d_{ij}^2) \geq 0$,

iter-view distance

\n
$$
-f[j] \|_{2}^{2}/2
$$

$$
e^{i,j}
$$
\nwhere the **pairwise importance** $\alpha_{ij} := \phi'(\xi_i)\psi'(\xi)$ where $\xi_i := \sum_{j \neq i} \psi(d_i^2 - d_{ij}^2)$.

$$
\alpha
$$
 as an adversarial player

[Theorem] If $\psi(x) = e^{x/\tau}$, then $\alpha(\theta) = \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\theta) - \mathcal{R}(\alpha)$

where $A := \{\alpha: \ \forall i, \sum_{j \neq i} \alpha_{ij} = \tau^{-1} \xi_i \phi'(\xi_i), \alpha_{ij} \geq 0 \}$

and entropy regularization term $\mathcal{R}(\alpha) \coloneqq \tau \sum_{i=1}^{N} H(\alpha_i)$

Example For infoNCE:

 $\alpha_{ij}(\boldsymbol{\theta}) = \frac{\exp(-d_{ij}^2/\tau)}{\epsilon \exp(-d_i^2/\tau) + \sum_{j \neq i} \exp(-a_j^2/\tau)}$

Larger α_{ij} on small d_{ij} \rightarrow distinct samples with similar representations

Theoretical Properties when α is fixed

Deep linear network

If $f_{\theta}(x) = W_L W_{L-1}$... $W_1 x$, then almost all local optima are global, and CL becomes Principal Component Analysis (PCA).

[Theorem] Let $X_\alpha := \mathbb{C}_\alpha[x]$. If $\lambda_{\max}(X_\alpha) > 0$, then for any local maximum $\boldsymbol{\theta} = 0$ $\{W_L, W_{L-1}, ..., W_1\}$ whose $W_{>1}^T W_{>1}$ has distinct maximal eigenvalue, then θ is aligned rank-1 (i.e., $W_l = \boldsymbol{v}_l \boldsymbol{v}_{l-1}^T$), \boldsymbol{v}_0 is the unit eigenvector for $\lambda_{\text{max}}(X_\alpha)$. • θ is globally optimal with objective $2\mathcal{E}^* = \lambda_{\max}(X_{\alpha}).$

Nonlinear network

Many interesting properties. Detailed in the paper and follow-up works (Please check Workshop on SSL, Theory and Practice on Dec. 3)

$$
\frac{1}{\exp(-d_{ij}^2/\tau)}
$$

$$
\boldsymbol{\theta}_{t+1} \coloneqq
$$

Max-player $\boldsymbol{\theta}$ Learns the representation to maximize constrativeness.

Min-player α Find distinct sample pairs that share similar representation (i.e., hard negative pairs) The pairwise importance α incorporates the effects of ϕ and ψ .

Contrastive Loss

InfoNCE (Oord et al, 2018) MINE (Belghazi et al, 2018) Triplet (Schroff et al., 2015) Soft Triplet (Tian et al., 2020c) N+1 Tuplet (Sohn, 2016) Lifted Structured (Oh Song et a Modified Triplet (Eqn. 10 in Co. Triplet Contrastive (Eqn. 2 in J

Different loss functions (ϕ, ψ) corresponds to the same energy function $\mathcal E$ How the min player $\alpha = \alpha(\theta)$ operates is different.

Experimental Results: a-CL

Use ResNet18 backbone, and set different α

More datasets

Backbone = ResNet50

OOMetaAI

Selected as Oral

[Theorem] Minimizing $\mathcal{L}_{\phi,\psi} \Leftrightarrow$ Coordinate-wise optimization:

 $\alpha_t := \arg \min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}_t) - \mathcal{R}(\alpha)$ $= \theta_t + \eta \nabla_{\theta} \mathcal{E}_{\alpha_t}(\theta_t)$

 α -CL- r_H : Entropy regularizer α -CL- r_{γ} : Inverse regularizer α -CL- r_s : Square regularizer $Q \propto C$ -CL-direct: Directly setting α .

 $(p = 4)$