Machine Learning for Hard Optimization Problems in Computer System Design

Yuandong Tian
Research Scientist and Manager

Facebook AI

Career Path

Reinforcement Learning

Go

Chess

Shogi

Poker

Big Success in Games

DoTA 2

StarCraft II

State:

where you are?

Action:

left/right/up/down

Next state:

where you are after the action?

State:

$$s = (x, y) = (6, 0)$$

Actions:

Left: $x \leftarrow x - 1$

 $\text{Right:} \ x \leftarrow x + 1$

Up: $y \leftarrow y - 1$

Down: $y \leftarrow y + 1$

Goal of Reinforcement Learning

Goal of Reinforcement Learning

Key Quantities

 $V^*(s)$ Maximal reward you can get starting from state s $Q^*(s,a)$ Maximal reward starting from s after taking action a $\pi(a|s)$ Probability of taking action a given state s

 $V^\pi(s)$ Reward you can get, starting from s following policy π $Q^\pi(s,a)$ Reward starting from s after taking action a and following π

Bellman Equations

Algorithm

Iteratively table filling

Tabular Q-learning

$$Q^{(n)}(s,a) \leftarrow r(s,a) + \gamma \max_{a'} Q^{(n-1)}(s'(s,a),a')$$

Value Iteration

$$V^{(n)}(s) \leftarrow \max_{a} r(s, a) + \gamma V^{(n-1)}(s'(s, a))$$

As long as we can enumerate *all possible* states and actions

Q-learning

$$Q^{(n)}(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \max_{a'} Q^{(n-1)}(s_{t+1}, a')$$

Parametric function

Q-learning

$$Q_{\theta}(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \max_{a'} Q_{\theta}(s_{t+1}, a')$$

 $Q_{ heta}(s,a)$ now have generalization capability

How could you take the gradient w.r.t θ ? Note that θ appears on both sides.

Q-learning

$$Q_{\theta}(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a')$$
 Old fixed parameters

Fixing RHS and learn θ from LHS.

Target network

Q-learning (make the target even smoother)

$$Q_{\theta}(s_t, a_t) \leftarrow (1 - \alpha)Q_{\theta}(s_t, a_t) + \alpha \left[r(s_t, a_t) + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') \right]$$

$$\Delta Q_{\theta}(s_t, a_t) \propto r(s_t, a_t) + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') - Q_{\theta}(s_t, a_t)$$

Temporal Difference (TD) Error δ

Multi-step Q-learning

$$\Delta Q_{\theta}(s_t, a_t) \propto \sum_{i=0}^{n-1} \gamma^i r(s_{t+i}, a_{t+i}) + \gamma^n \max_{a'} Q_{\theta}(s_{t+n}, a') - Q_{\theta}(s_t, a_t)$$
 n-step rollout

Trajectories from replay buffer

Sample trajectories

Q-learning

$$Q_{\theta}(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \max_{a'} Q_{\theta}(s_{t+1}, a')$$

How could we sample a trajectory in the state space?

Replay Buffer

Dynamic "dataset":

takes experience as input
provide data for training

On-policy versus Off-policy approaches

Off-policy, sampled by some behavior policy $\beta(\cdot|s)$ Expert behaviors (imitation learning) Supervised learning

On-policy, sampled by the current models $\ Q(s,a) \ \pi(\cdot|s)$

Agent not only learns from the data, but also chooses which data to learn.

Deep Q-Learning

Before training

What's Beyond Games?

GOOGLE TEACHES AI TO PLAY THE GAME OF CHIP DESIGN

February 20, 2020 Timothy Prickett Morgan

Several weeks with **human experts** in the loop

 \rightarrow

Fully automatic design in 6 hours

Optimization Problems

Travel Salesman Problem

Bin Packing

Job Scheduling

Protein Folding

Vehicle Routing

Model-Search

$$x^* = \arg\max_{x \in \Omega} f(x)$$

Wait...What?

- Many problems are NP-hard problems.
 - No good algorithm unless P = NP

- These guarantees are worst-case ones.
 - To prove a lower-bound, construct an adversarial example to fail the algorithm
- For specific distribution, there might be better heuristics.
 - Human heuristics are good but may not be suitable for everything

More Efficient Search for Optimization

Exhaustive search to get a good solution

More Efficient Search for Optimization

Can we use Machine Learning?

Exhaustive search to get a good solution

Efficient Search for Games

Go

DarkForest (2015) AlphaGo (2016) AlphaZero (2017) OpenGo (2018) Chess

Deep Blue (2002) AlphaZero (2017) Shogi

AlphaZero (2017)

Human Knowledge
Machine learned models

Optimization -> Reinforcement Learning

Name	Ways of Parameterization
One-shot Prediction	Spec → Solution
Progressive Prediction	Spec → SolPart1 → SolPart2 → SolPart3
Iterative Refinement	Spec → Sol1 → Sol2 (improved) → Sol3 (Better Improved)
Learned Action Space	Spec → All solution space → Small solution space →

Representation Matters!

Direct predicting solutions

[O. Vinyals. et al, Pointer Networks, NIPS 2015]

[H. Mao et al, Resource Management with Deep Reinforcement Learning, ACM Workshop on Hot Topics in Networks, 2016]

Local Rewriting Framework

Xinyun Chen

Yuandong Tian

[X. Chen and Y. Tian, Learning to Perform Local Rewriting for Combinatorial Optimization, NeurIPS 2019]

Start from a feasible solution and iteratively converges to a good solution

Q-Actor-Critic Training

How to train two policies $\pi_{\omega}(\cdot | s_t)$ and $\pi_{u}(\cdot | s_t [\omega_t])$?

Learn Q to fit cumulative rewards:

$$L_{\omega}(\theta) = \frac{1}{T} \sum_{t=0}^{T-1} (\sum_{t'=t}^{T-1} \gamma^{t'-t} r(s'_t, (\omega'_t, u'_t)) - Q(s_t, \omega_t; \theta))^2$$

 $\pi_{\omega}(\cdot | s_t)$: Q-learning with soft policy:

$$\pi_{\omega}(\omega_t|s_t;\theta) = \frac{\exp(Q(s_t,\omega_t;\theta))}{\sum_{\omega_t} \exp(Q(s_t,\omega_t;\theta))}$$

 $\pi_{u}(\cdot | s_{t} [\omega_{t}])$: Actor-Critic with learned Q:

$$L_u(\phi) = -\sum_{t=0}^{T-1} \Delta(s_t,(\omega_t,u_t)) \log \pi_u(u_t|s_t[\omega_t];\phi)$$
 facebook Artificial Ir

Advantage:

$$\Delta(s_t, (\omega_t, u_t)) \equiv \sum_{t=t'}^{T-1} \gamma^{t'-t} r(s_t', (\omega_t', u_t')) - Q(s_t, \omega_t; \theta)$$

Different Action Spaces for Different Applications

Expression Simplification

Online Job Scheduling

Graph representation

Resource 1 Resource 2

Online Job Scheduling

Job 1

Graph representation

Resource 1 Resource 2

Structured Data

rev. Close 986.09 pen -	Market Cap (U Volume (Qty.)	(SD) 626. 6,50		Day Low	Day High	52 Week Low 672.71	52 Week High 1,008.46
	(3,7)						972.09
INTRADAY 1W	1M 3M	6M YTD	1Y 3Y	5Y 10Y N	MAX CHART O	PTIONS =	EXCHANGE: NAS
1050.00 —							
1000.00 —							-+25%
950,00 —					1		-+20.5%
900.00 —							
850.00 —	4.						
800.00 -							- 0%

Delaunay triangulation timings (seconds)									
Number of points	10,000			100,000			1,000,000		
Point distribution	Uniform	Boundary	Tilted	Uniform	Boundary	Tilted	Uniform	Boundary	Tilted
Algorithm	Random	of Circle	Grid	Random	of Circle	Grid	Random	of Circle	Grid
Div & Conq, alternating cuts									
robust	0.33	0.57	0.72	4.5	5.3	5.5	58	61	58
non-robust	0.30	0.27	0.27	4.0	4.0	3.5	53	56	44
Div & Conq, vertical cuts									
robust	0.47	1.06	0.96	6.2	9.0	7.6	79	98	85
non-robust	0.36	0.17	failed	5.0	2.1	4.2	64	26	failed
Sweepline									
non-robust	0.78	0.62	0.71	10.8	8.6	10.5	147	119	139
Incremental									
robust	1.15	3.88	2.79	24.0	112.7	101.3	545	1523	2138
non-robust	0.99	2.74	failed	21.3	94.3	failed	486	1327	failed

facebook Artificial Intelligence

How to encode Structure Data

Child-Sum LSTM

$$y_1 = f(y_2, y_3, x_1)$$

f can be very complicated:

[Improved Semantic Representation From Tree-Structured Long Short-Term Memory Networks. K. Tai et al]

$$\begin{split} \tilde{h}_j &= \sum_{k \in C(j)} h_k, \\ i_j &= \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right), \\ f_{jk} &= \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right), \\ o_j &= \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right), \\ u_j &= \tanh \left(W^{(u)} x_j + U^{(u)} \tilde{h}_j + b^{(u)} \right), \\ c_j &= i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k, \\ h_j &= o_j \odot \tanh(c_j), \end{split}$$

How to encode Structure data

Graph Convolutional Network (GCN)

facebook Artificial Intelligence

How to encode Structure data

Graph Convolutional Network (GCN)

A: Affinity matrix of a graph

$$\hat{A} = D^{-1/2} A D^{-1/2}$$

Node embedding at layer *l*:

$$X_l \in \mathbb{R}^{n \times d_l}$$

Node Embedding at layer l+1:

$$X_{l+1} = \text{ReLU}(\hat{A}X_lW)$$

[Semi-Supervised Classification with Graph Convolutional Networks, T. Kipf and M. Welling, ICLR 2017]

Online Job Scheduling

Baselines:

Earliest Job First (EJF)
Shortest Job First (SJF)
Shortest First Search (SJFS)
DeepRM

Offline baselines:

Google OR-tools (OR-tools)
SJF-offline

	Time (s)
OR-tools	10.0
DeepRM	0.020
NeuRewriter	0.037

D: Number of resources

Online Job Scheduling: Ablation Study

The learned model can generalize to different job distributions.

facebook Artificial Intelligence 44

Expression Simplification

facebook Artificial Intelligence

Expression Simplification

Baselines:

Z3-simplify
Z3-ctx-solver-simplify
Heuristic Search
Halide rules

	Time (s)
Z3-solver	1.375
NeuRewriter	0.159

Follow-up work: Getting rid of manually specified rules

[H. Shi et al., Deep Symbolic Superoptimization without Human Knowledge, ICLR 2020]

Capacitated Vehicle Routing

Code is available: https://github.com/facebookresearch/neural-rewriter

Coda: An End-to-End Neural Program Decomplier

Cheng Fu¹, Huili Chen¹, Haolan Liu¹, Xinyun Chen³, Yuandong Tian², Farinaz Koushanfar¹, Jishen Zhao¹

¹UC San Diego, ²Facebook AI Research, ³UC Berkeley

NeurIPS 2019

Background: Decompilation

- Goal of Decompilation
 - From Binary Execution to High-level program language

Challenges

• Many hardware architectures (ISA): x86, MIPS, ARM

- Many Programming Languages (PL)
 - Extra Human effort to extend to the new version of the hardware architectures or programming languages
- Our goals:
 - Maintain both the functionality and semantics of the binary executables
 - Make the design process end-to-end (generalizable to various ISAs and PLs)

Coda Design

Leverage both syntax and dynamic information

Stage 1: Coda Sketch Generation

• Is Decompilation simply a translation problem?

More than a translation problem!

Encoder

- N-ary Tree Encoder to capture **inter** and **intra** dependencies of the low-level code.
- Opcode and its operands are encoded together
- Different encoder is used for different instruction types
 - memory (mem)
 - branch (br)
 - arithmetic (art).

```
source C program
                        mem h0
         $1, 24($fp)
                        mem h1
             20 ($fp)
                        art h2
                       mem h3
             28 ($fp)
                        mem h4
             28 ($fp)
                        mem h5
             20 ($fp)
                        art h6
             $2, $1
                         br h7
             $BB0 3
   beqz
                         br h8
                         br h9
   $B2:
                        mem h10
             28 ($fp)
                        mem h11
             20 ($fp)
                        art h12
         $1, $1, $2
  mu1
         $2, 24($fp)
                        art h14
         $1, $1, $2
  subu
                         br h15
         $B3
                        mem h16
16 sw
         $1, 20($fp)
```


Decoder

- Generate Abstract Syntax Tree (AST)
- AST can be equivalently translated into its corresponding high level Program
- Advantages:
 - Prevent error propagation/ Preserve node dependency / capture PL grammar
 - Boundaries are more explicit (terminal nodes)
- Using Attention Mechanism

- The sketch generated in Stage 1 may contain errors:
 - mispredicted tokens, missing lines, redundant lines

Golden program

Wrongly predicted

Missing lines

Redundant lines

```
If( a > c ) {
    a = b + c * a;
    b = a;
    b = a;
}
```


- Correct the error by iterative Error Predictor (EP)
 - Iterative rewriting!
 - Spot errors in the generated assembly codes
 - Fix errors and recompile
 - Repeat 10 times

Experimental Setup

- Compiler configuration: Clang **–OO** (no code optimization)
- Benchmarks:
 - Synthetic programs:
 - Karel library (Karel) only function calls
 - Math library (Math) function calls with arguments
 - Normal expressions (NE) (^,&,*,-,<<,>>,|,%)
 - Math library + Normal expressions (Math+NE) replaces the variables in NE with a return value of math function.
- Metrics:
 - Token Accuracy
 - Program Accuracy

Result – Stage 1 Performance

• Token accuracy (%) across benchmarks

Benchmarks	Seq2Seq	Seq2Seq+Attn	Seq2AST+Attn	Inst2seq+Attn	Inst2AST+Attn
Karel _S	51.61	97.13	99.81	98.83	99.89
$Math_S$	23.12	94.85	99.12	96.20	99.72
NE_S	18.72	87.36	90.45	88.48	94.66
$(Math+NE)_S$	14.14	87.86	91.98	89.67	97.90
$Karel_L$	33.54	94.42	98.02	98.12	98.56
$Math_L$	11.32	91.94	96.63	93.16	98.63
NE_L	11.02	81.80	85.92	85.97	91.92
(Math+NE) _L	6.09	81.56	85.32	86.16	93.20

- Highest token accuracy across all benchmarks (96.8% on average) compared to baselines.
- 10.1% and 80.9% margin over a naive Seq2Seq model with and without attention.
- More tolerant to the growth of program length.

Result – Stage 2 Performance

Program accuracy (%)

Danah Marika	(i) Error Detection		(ii) Befor EC		After EC			
BenchMarks	s2s,10	i2a,10	s2s	i2a	s2s	i2a		
$Math_S$	91.4	94.2	40.1	64.8	91.2	100.0	,	_
NE_S	83.5	88.7	6.6	12.2	53.0	78.6	Baseline	
$(Math+NE)_S$	83.6	90.1	3.5	43.2	63.6	89.2	Ours	
$Math_L$	87.5	91.3	21.7	51.8	83.9	99.5	•	
NE_L	78.1	84.5	0.2	2.6	33.1	56.4		
$(Math+NE)_L$	80.2	85.3	0.1	4.9	38.3	67.2		

s2s = sequence-to-sequence with attention

I2a = instruction encoder to AST decoder with attention

Result - Overall

- Coda vs. traditional decompiler (RetDec)
 - Lines of code: ~10K vs. ~500K -- 50x reduction
 - Toolkit size: ~10MB Neural network size vs. ~5GB toolkit size -- 500x reduction

- Summary:
 - First neural-based decompiler
 - Generative models with iterative error corrections.
 - Significantly outperforms seq2seq models.

Predefined Action Space

Fixed action space = R^{361}

[B. Zoph and Q. Le, Neural Architecture Search with Reinforcement Learning, 2016]

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with a deep reinforcement learning inspired architecture]

Predefined Action Space

Fixed action space = R^{361}

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with a deep reinforcement learning inspired architecture]

Why Predefined Action Space?

We only care the final solution

We don't care how we get it.

Different Representation matters

Depth = {1, 2, 3, 4, 5} Channels = {32, 64} KernelSize = {3x3, 5x5}

1364 networks.

Goal: Find the network with the best accuracy using fewest trials.

Representation of action space

Sequential = { add a layer, set K, set C }
Global = { Set depth, set all K, set all C }

The Meaning of Learning Action Space

Not allowed in games, but doable in optimization.

Learning Action Space

Linnan Wang

Saining Xie

Teng Li

Rodrigo Fonseca

Yuandong Tian

[L. Wang, R. Fonseca, Y. Tian, Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search, NeurIPS 2020]

[L. Wang, S. Xie, T. Li, R. Fonseca, Y. Tian, Sample-Efficient Neural Architecture Search by Learning Action Space, TPAMI 2021]

Partition = Action

Different Partition Different Value Distribution

Learn action space

Nonlinear Partition

Approach

Fixed action branches

(but not action space)

(a) Train the action space.

	Accuracy
(filter=2, depth=5)	85%
(filter=3, depth=7)	92%

(b) Search using learned action space until a fixed #rollouts are used.

Monte Carlo Tree Search

Search towards the good nodes while keeping exploration in mind

$$a_t = \arg\max_a Q(s_t, a) + u(s_t, a)$$

Exploration
$$u(s,a) = c_{\mathrm{puct}} P(s,a) \frac{\sqrt{\sum_b N(s,b)}}{1 + N(s,a)}$$

Why Exploration is Important

Most solutions are bad but there exists an optimal one

- Bad solution
- OK solution
- Optimal solution

but not optimal

NASNet Search Space

Performance

Customized dataset: LSTM-10K (PTB)

facebook Artificial Intelligence

Performance

Customized dataset: ConvNet-60K (CIFAR-10, VGG style models)

Performance

NASBench-101 (CIFAR-10, 420k models, NASNet Search Space)

Each curve is repeated 100 times. We randomly pick 2k models to initialize.

Open Domain

CIFAR-10 (NASNet style architecture)

Model	Usir Image	M	GPU days		
NASNet-A+c/o [22]	Х	3.3 M	2.65	20000	2000
AmoebaNet-B+c/o [10]	X	2.8 M	$2.55_{\pm 0.05}$	27000	3150
PNASNet-5 [29]	X	3.2 M	$3.41_{\pm 0.09}^{-}$	F 1000 - 0500, C1000,004155	225
NAO+c/o [30]	X	128.0 M	2.11	1000	200
AmoebaNet-B+c/o	X	34.9 M	$2.13_{\pm 0.04}$	27000	3150
EfficientNet-B7	\checkmark	64M	1.01		
BiT-M	\checkmark	60M	1.09		
LaNet+c/o	X	3.2 M	${f 1.63}_{\pm 0.05}$	800	150
LaNet+c/o	X		$0.99_{\pm 0.02}$		150
0	nods				
	N207770		101 0 0		535-97 577735-55

one-shot NAS based methods						
ENAS+c/o [18]	Χ	4.6 M 2.89 -	0.45			
DARTS+c/o [20]	X	$3.3\mathrm{M}$ $2.76_{\pm0.09}$ -	1.5			
BayesNAS+c/o [31]	X	$3.4\mathrm{M}$ $2.81_{\pm0.04}$ -	0.2			
ASNG-NAS+c/o [32]	X	$3.9\mathrm{M}$ $2.83_{\pm0.14}$ -	0.11			
XNAS+c/0 [33]	X	3.7 M 1.81	0.3			
oneshot-LaNet+c/o	X	$3.6~{ m M}$ $1.68_{\pm0.06}$ -	3			
oneshot-LaNet+c/o	X	$45.3\mathrm{M}$ $1.2_{\pm0.03}$ -	3			

M: number of samples selected.

Open Domain

ImageNet (mobile setting Flop < 600M)

Model	FLOPs	Params	top1 / top5 err
NASNet-A (Zoph et al. (2018))	564M	5.3 M	26.0 / 8.4
NASNet-B (Zoph et al. (2018))	488M	5.3 M	27.2 / 8.7
NASNet-C (Zoph et al. (2018))	558M	4.9 M	27.5 / 9.0
AmoebaNet-A (Real et al. (2018))	555M	5.1 M	25.5 / 8.0
AmoebaNet-B (Real et al. (2018))	555M	5.3 M	26.0 / 8.5
AmoebaNet-C (Real et al. (2018))	570M	6.4 M	24.3 / 7.6
PNASNet-5 (Liu et al. (2018a))	588M	5.1 M	25.8 / 8.1
DARTS (Liu et al. (2018b))	574M	4.7 M	26.7 / 8.7
FBNet-C (Wu et al. (2018))	375M	5.5 M	25.1 / -
RandWire-WS (Xie et al. (2019))	583M	5.6 M	25.3 / 7.8
BayesNAS (Zhou et al. (2019))	-	3.9 M	26.5 / 8.9
LaNet	570M	5.1 M	25.0 / 7.7

La-MCTS as a meta method $x^* = \arg\min_{x \in \Omega} f(x)$

Ackley-2d

Rosenbrock-2d

Optimizing linear policy for Mujoco tasks

Limitations

Task	Reward Threshold	The average episodes (#samples) to reach the threshold LA-MCTS ARS V2-t [54] NG-lin [55] NG-rbf [55] TRPO-nn [54]				
Swimmer-v2	325	132	427	1450	1550	N/A
Hopper-v2	3120	2897	1973	13920	8640	10000
HalfCheetah-v2	3430	3877	1707	11250	6000	4250
Walker2d-v2	4390	$N/A(r_{best} = 3314)$	24000	36840	25680	14250
Ant-v2	3580	$N/A(r_{best} = 2791)$	20800	39240	30000	73500
Humanoid-v2	6000	$N/A(r_{best} = 3384)$	142600	130000	130000	unknown

N/A stands for not reaching reward threshold.

Too many explorations might hurt in Mujoco tasks.

 r_{best} stands for the best reward achieved by LA-MCTS under the budget in Fig. 3.

Multi-Objective Optimization

HV: Hyper Volume of the Pareto Frontier

Branin-Currin problem (2 objective)

Vehicle Safety (3 objective)

Waveguide

qEHVI: https://arxiv.org/pdf/2006.05078.pdf

Code is public now!

https://github.com/facebookresearch/LaMCTS

Both 3rd and 8th teams in NeurIPS 2020 Black-box optimization competition use our method!

Robust, high-performance reinforcement learning environments for compiler optimization tasks

An iterative decision-making process

* not even slightly to scale

Challenges

- L. Huge state and action space
- 2. Many irrelevant actions
- 3. Graph-structured observations
- 4. Learned policy needs to transfer well

Goals

- 1. Lower the barrier to entry to AI for compilers research.
- 2. Provide common benchmarks for compiler optimization tasks.
 - e.g. "ImageNet for Compilers", <u>CodeXGLUE</u> for performance.
- 3. Advance the state-of-the-art in AI for compilers

Long term

- 1. Enable every single compiler decision to be controlled by an agent.
- 2. Build a family of "SysML Gyms" and tools for making new ones.

There are a lot of Programs available

Dataset	License	Num. Benchmarks	Validatable? 1	Difficulty ²
blas-v0	BSD 3-Clause	300	No	0.3
cBench-v1	BSD 3-Clause	23	Partial	0.8
github-v0	CC BY 4.0	50,708	No	0.7
linux-v0	GPL-2.0	13,920	No	0.4
mibench-v0	BSD 3-Clause	40	No	0.8
npb-v0	NASA v1.3	122	No	0.4
opencv-v0	Apache 2.0	442	No	0.3
poj104-v0	BSD 3-Clause	49,628	No	0.7
tensorflow-v0	Apache 2.0	1,985	No	0.3

Leader Board

LLVM Instruction Count

Author	Algorithm	Links	Date	Walltime (mean)	Codesize Reduction (geomean)
Facebook	Random search (t=10800)	write-up, results	2021-03	10,512.356s	1.062×
Facebook	Random search (t=3600)	write-up, results	2021-03	3,630.821s	1.061×
Facebook	Greedy search	write-up, results	2021-03	169.237s	1.055×
Facebook	Random search (t=60)	write-up, results	2021-03	91.215s	1.045×
Facebook	e-Greedy search (e=0.1)	write-up, results	2021-03	152.579s	1.041×
Jiadong Guo	Tabular Q (N=5000, H=10)	write-up, results	2021-04	2534.305	1.036×
Facebook	Random search (t=10)	write-up, results	2021-03	42.939s	1.031×
Jiadong Guo	Tabular Q (N=2000, H=5)	write-up, results	2021-04	694.105	0.988×

Summarization and Future Works

- Summary
 - Machine Learning can be used to learn heuristics for optimization problems.
 - Many system problem are optimization problems
 - Use ML to make the system smarter ©

- Many Challenges ahead
 - Huge state / action space.
 - Irrelevant actions
 - Slow evaluation (sim2real problem)

Thanks!