
Machine Learning for Hard Optimization 
Problems in Computer System Design

Yuandong Tian
Research Scientist and Manager

Facebook AI



Career Path

2006 20132008 20212015

PhD Waymo Facebook AI Research

Computer Vision Reinforcement Learning



Reinforcement Learning 

Big Success in Games

DoTA 2 StarCraft II

Go Chess Shogi Poker



What is Reinforcement Learning?

Agent

Environment

Action

State

Reward



What is Reinforcement Learning?

State: 
where you are?

Action: 
left/right/up/down

Next state: 
where you are after the action?



What is Reinforcement Learning?

State: 

Actions: 
Left: 
Right:
Up: 
Down:



What is Reinforcement Learning?

Trajectory



Goal of Reinforcement Learning

Goal State



Goal of Reinforcement Learning

Maximize long-term reward: 

Agent

Environment

Action

State

Reward

Discount factor

Trajectory



Key Quantities

Maximal reward you can get starting from state 𝑠

Agent

Environment

Action

State

Reward

Maximal reward starting from 𝑠 after taking action 𝑎
Probability of taking action 𝑎 given state 𝑠



Key Quantities

Reward you can get, starting from 𝑠 following policy 𝜋

Agent

Environment

Action

State

Reward

Reward starting from 𝑠 after taking action 𝑎 and following 𝜋



Bellman Equations

Optimal solution



Algorithm

As long as we can enumerate all possible states and actions

Tabular Q-learning

Value Iteration

Iteratively table filling



On trajectories

Q-learning



On trajectories

Q-learning

Parametric function

now have generalization capability

How could you take the gradient w.r.t 𝜃 ?
Note that 𝜃 appears on both sides.



On trajectories

Q-learning

Old fixed parameters

Target networkFixing RHS and learn 𝜃 from LHS.



On trajectories

Q-learning (make the target even smoother)

[Mnih et al. Human-level control through deep reinforcement learning, Nature 2015]

Temporal Difference (TD) Error

Smoothing factor



On trajectories

Multi-step Q-learning

n-step rollout

Trajectories from replay buffer



Sample trajectories

How could we sample a trajectory in the state space?

Q-learning



Replay Buffer

Replay Buffer

Dynamic “dataset”:
takes experience as input
provide data for training

Behavior policy
Training model

trajectories

SampleGenerate



On-policy versus Off-policy approaches

Off-policy, sampled by some behavior policy
Expert behaviors (imitation learning) 
Supervised learning

On-policy, sampled by the current models

Agent not only learns from the data, but also chooses which data to learn. 



Deep Q-Learning



What’s Beyond Games?



Several weeks with human experts 
in the loop 

à

Fully automatic design in 6 hours



Optimization Problems

Travel Salesman Problem Job Scheduling Vehicle Routing

Bin Packing Protein Folding Model-Search

𝑥∗ = argmax
"∈$

𝑓(𝑥)



Wait…What?

• Many problems are NP-hard problems.
• No good algorithm unless P = NP

• These guarantees are worst-case ones.
• To prove a lower-bound, construct an adversarial example to fail the algorithm

• For specific distribution, there might be better heuristics.
• Human heuristics are good but may not be suitable for everything



More Efficient Search for Optimization

Human Knowledge

Exhaustive search to get a good solution



More Efficient Search for Optimization

Human Knowledge

Exhaustive search to get a good solution

Can we use 
Machine Learning?



Efficient Search for Games

DarkForest (2015)
AlphaGo (2016)
AlphaZero (2017)
OpenGo (2018)

Chess ShogiGo

Deep Blue (2002)
AlphaZero (2017)

AlphaZero (2017)

Human Knowledge
Machine learned models



Optimization à Reinforcement Learning

Name Ways of Parameterization

One-shot Prediction Spec à Solution

Progressive Prediction Spec à SolPart1 à SolPart2 à SolPart3 

Iterative Refinement Spec à Sol1 à Sol2 (improved) à Sol3 (Better Improved)

Learned Action Space Spec à All solution space à Small solution space à …

Representation Matters!



Direct predicting solutions

[O. Vinyals. et al, Pointer Networks, NIPS 2015]

Convex hull

Seq2seq model

[H. Mao et al, Resource Management with Deep Reinforcement
Learning, ACM Workshop on Hot Topics in Networks, 2016]

Schedule the job
to i-th slot

Policy gradient



Local Rewriting Framework

Start from a feasible solution and 
iteratively converges to a good solution

𝒔𝒕

𝒔𝒕"𝟏 𝒔𝒕"𝟐

𝒔𝒕"𝟑
𝒔𝒕"𝟒

Xinyun Chen Yuandong Tian

[X. Chen and Y. Tian, Learning to Perform Local Rewriting
for Combinatorial Optimization, NeurIPS 2019]

𝒔𝒕

𝝎𝒕

𝒔𝒕[𝝎𝒕]

𝒖𝒕

𝒔𝒕"𝟏

𝒔𝒕 𝝎𝒕 ∼ 𝝅𝝎 ⋅ |𝒔𝒕 𝒖𝒕 ∼ 𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕]

𝒔𝒕"𝟏 = 𝒇(𝒔𝒕, 𝝎𝒕, 𝒖𝒕)

Current State
(i.e. Solution) Region-Picker Rule-Picker



Q-Actor-Critic Training
How to train two policies 𝝅𝝎 ⋅ |𝒔𝒕 and 𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕] ?

𝝅𝝎 ⋅ |𝒔𝒕 : Q-learning with soft policy:

𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕] : Actor-Critic with learned Q:

Learn Q to fit cumulative rewards:

Advantage:

35



Different Action Spaces for Different Applications

min -

v0 v2 v1 v1

𝒔𝒕

𝝎𝒕
∗ = argmax 𝝅𝝎 ⋅, 𝒔𝒕

Constant
Reduction

0
𝒖)

≤(b)(a)
0

1

5

3

42

𝝎𝒕
∗

𝒔𝒕

𝒖!

4

3

swap

Expression SimplificationOnline Job Scheduling

Vehicle routing 36



Online Job Scheduling

Scheduling 1
(Sequential)

Job 1

Job 2

Job 3

Jobs

Resource 1

0

1

2

3

1 32 4 5 6 time

Slow down

1

2

3

Graph representation
𝑇 = 2, 𝐴 = 1

𝑇 = 3, 𝐴 = 2

𝑇 = 1, 𝐴 = 3

Resource 2

37



Online Job Scheduling

Scheduling 1
(Sequential)

Job 1

Job 2

Job 3

Jobs

Resource 1 0

1

2

3

1 32 4 5 6

1

2

3

time

Slow 
down

Graph representation

0

1

2

3

1 32 4 5 6 time

Slow down

1

2

3

Graph representation

Scheduling 2

𝑇 = 2, 𝐴 = 1

𝑇 = 3, 𝐴 = 2

𝑇 = 1, 𝐴 = 3

Resource 2

38



Structured Data

39



How to encode Structure Data
Child-Sum LSTM

f can be very complicated:

[Improved Semantic Representation From Tree-Structured
Long Short-Term Memory Networks. K. Tai et al]

40



How to encode Structure data

• Graph Convolutional Network (GCN)

41

[Semi-Supervised Classification with Graph Convolutional
Networks, T. Kipf and M. Welling, ICLR 2017]



How to encode Structure data

• Graph Convolutional Network (GCN)

A: Affinity matrix of a graph

Node Embedding at layer l+1:

Node embedding at layer l:

42

[Semi-Supervised Classification with Graph Convolutional
Networks, T. Kipf and M. Welling, ICLR 2017]



Online Job Scheduling
Earliest Job First (EJF)
Shortest Job First (SJF)
Shortest First Search (SJFS)
DeepRM

Google OR-tools (OR-tools)
SJF-offline

Baselines:

Offline baselines:

D: Number of resources
43



Online Job Scheduling: Ablation Study
The learned model can generalize to different job distributions.

44



Expression Simplification

45



Expression Simplification

Z3-simplify
Z3-ctx-solver-simplify
Heuristic Search
Halide rules

Baselines:

Follow-up work: Getting rid of manually specified rules
[H. Shi et al., Deep Symbolic Superoptimization without Human Knowledge, ICLR 2020]

46



Capacitated Vehicle Routing

Code is available: https://github.com/facebookresearch/neural-rewriter

https://github.com/facebookresearch/neural-rewriter


Coda: An End-to-End Neural Program 
Decomplier

Cheng Fu1, Huili Chen1, Haolan Liu1, Xinyun Chen3, Yuandong Tian2, Farinaz Koushanfar1, Jishen Zhao1

1UC San Diego, 2Facebook AI Research, 3UC Berkeley

NeurIPS 2019

48



Background: Decompilation

• Goal of Decompilation
• From Binary Execution to High-level program language



Challenges

• Many hardware architectures (ISA): x86, MIPS, ARM

• Many Programming Languages (PL)
• Extra Human effort to extend to the new version of the hardware architectures 

or programming languages

• Our goals:
• Maintain both the functionality and semantics of the binary executables
• Make the design process end-to-end (generalizable to various ISAs and PLs)



Coda Design

Stage 2

Error
Correction

Stage 1

Code
Sketch 
Generation

End-to-End Framework

Low-level code High level program

Find good candidates
Iteratively correct the candidates 
towards perfect match

Leverage both syntax and dynamic information



Stage 1: Coda Sketch Generation

• Is Decompilation simply a translation problem? 

Encoder Recurrent Neural Network 
(RNN)

Decoder Recurrent Neural Network 
(RNN)

More than a translation problem!
52



Stage 1: Coda Sketch Generation

• Encoder
• N-ary Tree Encoder to capture inter and intra
dependencies of the low-level code.
• Opcode and its operands are encoded together
• Different encoder is used for different instruction types

• memory (mem)
• branch (br) 
• arithmetic (art).



Stage 1: Coda Sketch Generation

• Decoder
• Generate Abstract Syntax Tree (AST)
• AST can be equivalently translated into its corresponding high level Program
• Advantages:

• Prevent error propagation/ Preserve node dependency / capture PL grammar
• Boundaries are more explicit (terminal nodes)

• Using Attention Mechanism



Stage 2: Iterative Error Correction

• The sketch generated in Stage 1 may contain errors:
• mispredicted tokens,  missing lines, redundant lines

Golden program

If( a > c ) {
a = b + c * a;
b = a – c;

}

Wrongly predicted

If( a > b ) {
a = b + c * a;
b = a - b;

}

Missing lines

If( a > c ) {
a = b + c * a;

}

Redundant lines

If( a > c ) {
a = b + c * a;
b = a;
b = a;

}



• Correct the error by iterative Error Predictor (EP)
• Iterative rewriting!
• Spot errors in the generated assembly codes
• Fix errors and recompile
• Repeat 10 times

Stage 2: Iterative Error Correction



Experimental Setup

• Compiler configuration: Clang –O0 (no code optimization)
• Benchmarks:
• Synthetic programs:

• Karel library (Karel) – only function calls
• Math library (Math) – function calls with arguments
• Normal expressions (NE) – (^,&,*,-,<<,>>,|,% ….)
• Math library + Normal expressions (Math+NE) – replaces the variables in NE with a 

return value of math function.

• Metrics:
• Token Accuracy
• Program Accuracy



Result – Stage 1 Performance

• Token accuracy (%) across benchmarks

• Highest token accuracy across all benchmarks (96.8% on average) compared to baselines.
• 10.1% and 80.9% margin over a naive Seq2Seq model with and without attention.
• More tolerant to the growth of program length.



Result – Stage 2 Performance

s2s = sequence-to-sequence with attention I2a = instruction encoder to AST decoder with attention

Baseline

Ours

• Program accuracy (%)



Result – Overall

• Coda vs. traditional decompiler (RetDec)
• Lines of code: ~10K vs. ~500K -- 50x reduction
• Toolkit size: ~10MB Neural network size vs. ~5GB toolkit size -- 500x reduction

• Summary:
• First neural-based decompiler

• Generative models with iterative error corrections.
• Significantly outperforms seq2seq models.

60



Predefined Action Space

Fixed action space = 𝑅+,-

[B. Zoph and Q. Le, Neural Architecture Search with Reinforcement Learning, 2016]

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with 
a deep reinforcement learning inspired architecture]



Predefined Action Space

Fixed action space = 𝑅+,-

[B. Zoph and Q. Le, Neural Architecture Search with Reinforcement Learning, 2016]

[G. Malazgirt, TauRieL: Targeting Traveling Salesman Problem with 
a deep reinforcement learning inspired architecture]

Why Predefined 
Action Space?



Why Predefined Action Space?

We only care the final solution

We don’t care how we get it.



Different Representation matters 

Goal: Find the network 
with the best accuracy using fewest trials.

Depth = {1, 2, 3, 4, 5}
Channels = {32, 64}
KernelSize = {3x3, 5x5}

Representation of action space

Sequential = { add a layer, set K, set C }
Global = { Set depth, set all K, set all C }

Global is better!

72

1364 networks. 



The Meaning of Learning Action Space

Change the semantic 
meaning of the edges. 

Not allowed in games, but doable in optimization. 



Learning Action Space

Partition = Action

[L. Wang, R. Fonseca, Y. Tian, Learning Search Space Partition for Black-box Optimization 
using Monte Carlo Tree Search, NeurIPS 2020]

[L. Wang, S. Xie, T. Li, R. Fonseca, Y. Tian, Sample-Efficient Neural Architecture Search by 
Learning Action Space, TPAMI 2021]

Saining Xie Teng Li Rodrigo Fonseca Yuandong TianLinnan Wang



Different Partition à Different Value Distribution

Accuracy



Learn action space

#filters

depth

98%

96%

83%

10%

60%

30% 35%

Action 1=”right”

Action 1=”left”

“left” “right”

Current node whose
action space is learned

76



1

𝑥2

1

2 3

4 5 76

4

5

7
6

Nonlinear boundary
learnt by SVM

2

3

𝑥3

2 3

1

Nonlinear Partition

Build local models

[L. Wang, et al, Learning Search Space Partition for Black-box Optimization using MCTS, NeurIPS 2020]

𝒇(𝒙)



Approach

Fixed action branches
(but not action space)

Accuracy
(filter=2, depth=5) 85%
(filter=3, depth=7) 92%

(a) Train the action space.

Getting the true quality 𝒇(𝒙) for the solution 𝒙

(b) Search using learned action space until
a fixed #rollouts are used.

Monte Carlo Tree Search
(MCTS)



Monte Carlo Tree Search

0.6 / 10

0.6 / 10
0.3 / 10

0.7 / 30

0.83 / 18

0.9 / 10

0.5 / 12

0.75 / 8

0.6 / 50(a) (b) (c)

Search towards the good nodes while keeping exploration in mind 

Exploration

1/1

0.6 / 10

0.6 / 10
0.3 / 10

0.7 / 30

0.83 / 18

0.9 / 10

0.5 / 12

0.75 / 8

0.6 / 50 
(mean performance / visitation)

0.6 / 10

0.6 / 10
0.3 / 10

0.71 / 31

0.84 / 19

0.91 / 11

0.5 / 12

0.75 / 8

0.61 / 51



Why Exploration is Important

“left” “right”

Optimal

OK solutions 
but not optimal

Most solutions are bad but there 
exists an optimal one

Bad solution

OK solution

Optimal solution



NASNet Search Space



Performance
Customized dataset: LSTM-10K (PTB)

82



Performance
Customized dataset: ConvNet-60K (CIFAR-10, VGG style models)

83



Performance
NASBench-101 (CIFAR-10, 420k models, NASNet Search Space)

Each curve is repeated 100 times. We randomly pick 2k models to initialize.
84



Open Domain

CIFAR-10
(NASNet style
architecture)

85



Open Domain

ImageNet
(mobile setting
Flop < 600M)

86



La-MCTS as a meta method

Ackley-100dAckley-20d

Rosenbrock-100dRosenbrock-20d

Ackley-2d

Rosenbrock-2d

𝑥∗ = argmin
"∈$

𝑓(𝑥)



Optimizing linear policy for Mujoco tasks

(e) Ant, #params = 888(d) Half-Cheetah, #params =102

(b) Hopper, #params = 33 (c) Walker-2d, #params = 102

(f) Humanoid, #params = 6392

(a) Swimmer, #params = 16



Limitations

Too many explorations might hurt in Mujoco tasks.



Multi-Objective Optimization

Vehicle Safety 
(3 objective)

Branin-Currin problem
(2 objective)

Waveguide 

HV: Hyper Volume of the Pareto Frontier

qEHVI: https://arxiv.org/pdf/2006.05078.pdf

https://arxiv.org/pdf/2006.05078.pdf


Code is public now!

https://github.com/facebookresearch/LaMCTS

Both 3rd and 8th teams in NeurIPS 2020 Black-box optimization 
competition use our method! 



Robust, high-performance reinforcement learning environments for compiler 
optimization tasks

https://github.com/facebookresearch/CompilerGym



CompilerGym

.c a.out

Front-end CodegenMiddle-end (phase-ordering)

AST IR
t=0

IR
t=n

asm

Parsing, semantic 
analysis, type checking...

Semantics-preserving rewrites to produce 
more efficient / more compact code.

Lowering to hardware 
instructions. Another 
round of rewrite(s).

IR
t=1

IR
t=2 ..

.opt1 opt2 opt3 optn

An iterative decision-making process Challenges
1. Huge state and action space
2. Many irrelevant actions
3. Graph-structured observations
4. Learned policy needs to transfer well

Phase
ordering

> 10300

Atoms in 
universe

~1060

* not even slightly to scale



1. Lower the barrier to entry to AI for compilers research.

2. Provide common benchmarks for compiler optimization tasks.
○ e.g. "ImageNet for Compilers", CodeXGLUE for performance.

3. Advance the state-of-the-art in AI for compilers

Long term

1. Enable every single compiler decision to be controlled by an agent.

2. Build a family of "SysML Gyms" and tools for making new ones.

Goals

https://github.com/microsoft/CodeXGLUE


There are a lot of Programs available



Leader Board
LLVM Instruction Count



Summarization and Future Works

• Summary
• Machine Learning can be used to learn heuristics for optimization problems. 
• Many system problem are optimization problems
• Use ML to make the system smarter J

• Many Challenges ahead
• Huge state / action space. 
• Irrelevant actions 
• Slow evaluation (sim2real problem)



Thanks!

98


