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ABSTRACT

Crowdsourcing has recently become popular among machine
learning researchers and social scientists as an effective way
to collect large-scale experimental data from distributed work-
ers. To extract useful information from the cheap but poten-
tially unreliable answers to tasks, a key problem is to identify
reliable workers as well as unambiguous tasks. Although for
objective tasks that have one correct answer per task, pre-
vious works can estimate worker reliability and task clarity
based on the single gold standard assumption, for tasks that
are subjective and accept multiple reasonable answers that
workers may be grouped into, a phenomenon called schools
of thought, existing models cannot be trivially applied. In
this work, we present a statistical model to estimate worker
reliability and task clarity without resorting to the single
gold standard assumption. This is instantiated by explicit-
ly characterizing the grouping behavior to form schools of
thought with a rank-1 factorization of a worker-task group-
size matrix. Instead of performing an intermediate infer-
ence step, which can be expensive and unstable, we present
an algorithm to analytically compute the sizes of different
groups. We perform extensive empirical studies on real data
collected from Amazon Mechanical Turk. Our method dis-
covers the schools of thought, shows reasonable estimation
of worker reliability and task clarity, and is robust to hy-
perparameter changes. Furthermore, our estimated worker
reliability can be used to improve the gold standard predic-
tion for objective tasks.
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1. INTRODUCTION

Crowdsourcing has emerged as an effective way to collect
large-scale data to help solve challenging scientific and engi-
neering problems. In web services such as Amazon Mechan-
ical Turk (M-Turk)', human intelligence tasks (HITs) (e.g.,
“Does the image contain a car?”) are distributed from the re-
questor to an unknown set of workers, called crowds, who are
paid with a low cost to fulfill them. There are two kinds of
applications for crowdsourcing. One application is to obtain
correct labels of a dataset, used in computer vision [21], nat-
ural language processing [19], etc. In such a scenario, task
is objective with one correct answer, called gold standard.
The goal is to recover it from the noisy worker responses.
The other application is to use crowdsourcing for qualita-
tive user studies [11], demographic survey [16] or solving a
hard problem [1]. In this case, each task may have multiple
valid answers, called schools of thought, since the tasks are
subjective or can be misinterpreted, and the workers come
from a variety of cultural and educational background [16].

Due to the open and anonymous nature of crowdsourcing,
the quality of the collected data is not guaranteed. In order
to use these data well, in both scenarios we need to address
two common key problems — “how to identify a small num-
ber of unreliable workers whose answers may be random or
even adversary” and “how to identify tasks that may cause
confusion to workers”. Formally, we call these two factors
worker reliability and task clarity. In crowdsourcing appli-
cations that aim to obtain ground truth labels of a dataset,
only the labels from reliable workers should be trusted, and
ambiguous tasks should be redesigned to remove any mis-
understanding in the future. In applications that aim for
user study or look for multiple opinions, one needs to dis-
tinguish whether a worker has a reasonable opinion, or just
puts random answers that may ruin the data distribution.

In the former case, many previous works [15, 23, 19, 14,
10] have been presented and shown promising results com-
pared to the “majority voting” heuristic. The worker relia-
bility is defined either as the degree of concentration (pre-
cision) [15, 23, 22] or confusion matrix [9, 18, 5] referencing
the estimated gold standard, whose existence is an essential
assumption in these works. Some works also model task d-
ifficulty [22], again based on the existence of gold standard.
Computationally, an iterative approach is usually adopted
to estimate the gold standard and worker reliability simul-
taneously. The rationale is that knowing the gold standard
helps to identify reliable workers and workers’ reliability is
useful to weigh their answers to recover the gold standard.
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However, in the latter case where more than one answers
could be valid and reasonable, defining worker reliability on
top of a single gold standard is no longer a good idea. For
some workers, their reliability can be underestimated only
because they support a reasonable idea that is not the es-
timated single gold standard, yet in fact they may follow
a unique but reasonable thinking and should be respected.
On the other hand, an unambiguous task that is supposed to
have alternative answers may also be estimated as confusing.

To deal with this problem, in this paper, we directly mod-
el worker reliability and task clarity without the help of gold
standard. As a result, this model works in both scenarios
of crowdsourcing applications. Our model is built on the
following two mild assumptions on the grouping behavior
that happens in schools of thought: 1) reliable workers tend
to agree with other workers in many tasks; and 2) the an-
swers to a clear task tend to form tight clusters. Following
this idea, we develop a low-rank computational model to ex-
plicitly relate the grouping behavior of schools of thought,
characterized by group sizes, to worker reliability and task
clarity. To bypass the hard model selection problem of de-
termining the unknown number of clusters (i.e., schools), we
apply nonparametric Bayesian clustering techniques, which
have shown great promise in statistics and machine learn-
ing [3, 6, 24]. Moreover, instead of performing a potentially
expensive and unstable intermediate inference step, which is
necessary for all the previous works [15, 23, 21, 22], we derive
an analytical form to estimate the expected group sizes. The
analytic form only depends on pairwise distances between
answers, making it generalizable to different answer types.
Interestingly, our model could provide a generative interpre-
tation of latent distance model for social networks [8]. The
worker reliability and task clarity are thus obtained via the
rank-1 factorization of the expected group size matrix.

Different from most previous works that focus on gold s-
tandard estimation, recent work [21] also models the schools
of thought for binary queries by assigning each worker a (d-
ifferent) linear classifier on hidden multidimensional repre-
sentations of tasks, with Gaussian priors on both represen-
tations and classifiers. The worker reliability is thus defined
as the precision of the linear model. However, it remains a
question whether such linear representations and Gaussian
priors for both tasks and workers are faithful to the data,
and whether heterogeneous tasks can be represented in the
same space. Our work avoids such representation issues by
explicitly modeling the grouping structure of the data. This
leads to fewer assumptions and parameters. Moreover, our
method allows an analytic solution, while [21] uses a coor-
dinate descent procedure to obtain a local optimum.

Finally, we apply our method to both simulation data and
the real data collected from M-Turk. In the real data, we
discover the group structure of schools of thought (Fig. 1),
and show estimated worker reliability and task clarity, as
well as a comparison with several benchmarks and sensitivity
analysis. For objective tasks, we use the estimated worker
reliability to select high quality workers for recovering gold
standard, which outperforms previous works [15, 21].

The paper is structured as follows. Section 2 introduces
our statistical model for crowdsourcing data analysis in the
presence of schools of thought, together with a simple algo-
rithm. Section 3 presents synthetic validation, and Section
4 presents analytical results on M-Turk. Finally, Section 5
concludes with future directions discussed.

2. ALOW-RANKSCHOOLS OF THOUGHT
MODEL

In this section, we present a computational model to es-
timate worker reliability and task clarity for crowdsourcing
data in the presence of schools of thought.

2.1 Basic Assumptions

In crowdsourcing, let N be the number of workers and K
be the number of tasks. Each worker is required to finish all
the K tasks (See the experimental design for more details).
We use a scalar \; > 0 to model the constant reliability
of worker ¢ among different tasks, and a scalar ur > 0 to
model the constant degree of clarity of task k that holds for
all workers?.

Like any useful statistical models, we need to make ap-
propriate assumptions in order to perform meaningful es-
timation and discover useful patterns. Specifically, for our
problem of estimating worker reliability and task clarity in
the presence of schools of thought, it suffices to make the
following two mild assumptions on the behavior of workers
and tasks:

1. A worker i who is consistent with many other workers
in most of the tasks is reliable, i.e. \; is large.

2. A task k whose answers form a few tight clusters is
easy, well-addressed and objective (large pg); while a
task whose answers form lots of small clusters is com-
plicated, confusing and subjective (small py).

We argue that the above two assumptions are reasonable
for characterizing crowdsourcing data. The first assumption
may fail if all the workers collaborate to cheat, or the task
is too hard so that most of the workers are misled towards
the same wrong answer. However, since the basic idea of
crowdsourcing is to ask the crowds for useful information,
it is not restrictive to trust the behavior of the majority of
workers. Furthermore, most previous works (e.g., majority
voting, [15] and [22]) in crowdsourcing assuming the exis-
tence of gold standards implicitly make the first assumption,
which is shown in both their initialization steps and their
model designs.

The second assumption can be interpreted as “sense-making”
that people make efforts to find interpretations from “expe-
rience” (their answers) [17]. Reliable workers are expected
to use more mental resource to obtain a reasonable answer,
while unreliable workers may give random nonsense answer-
s. A sensible task only contain a few reasonable answers but
random answers could be many. Thus reliable workers will
form large groups, while unreliable ones are discordant. This
assumption may fail if only a few candidate choices are avail-
able for a confusing task that has many potential answers.
This can be avoided by concatenating multiple questions in-
to one task, which expands the answer space to reveal the
true clustering structure (See the experiment section).

Note that K tasks and N workers have to be considered
jointly. A single task cannot identify whether a worker is
of high quality or not. Similarly, a single worker cannot
identify the ambiguity of tasks.

2A worker’s reliability can be possibly different in various
tasks and time-evolving; a task may be clear to a certain
subgroup of workers but not to others. A systematic study
of this more complicated phenomenon is beyond the scope
of this paper. We leave it for future work.
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Figure 1: Depict of schools of thought in our experiment that asks 402 unique workers to categorize an object
in images (sky, building, computer) and pick beautiful images (beautyl, beauty2). First row: As shown in the
posterior link probability matrix computed from our model (Eqn. (7)), workers give a variety of responses
that tend to cluster together, i.e., the schools of thought. Moreover, the scale (number) of schools of thought
is task-specific. Second row: Example images in each task. Sky: Only positive and negative images. Building:
Positive, ambiguous and negative images. Computer: Positive, ambiguous and negative images that contains
elusive objects. Image aesthetics: Beautiful/ordinary-looking images. See Section 4 for experiment design.

2.2 The Low-rank Model

Given the two assumptions, a quantitative relation fol-
lows. Suppose we have somehow clustered the worker re-
sponses of task k into My, clusters (the cluster model will be
presented in Section 2.3), where Mj is an unknown param-
eter. Let z;; denote the group index that worker ¢ corre-
sponds to in task k, and #z;, be the size of that group. In
this paper, #z;; is regarded as a way to represent the scale
of schools of thought. The larger #z;x is, the smaller the
scale is. We thus formally define our computational model
by relating #z;x to A; and ux as follows:

H#2ik = Aipbk + €ik. 1)

where €1 is a zero-mean random noise (its distribution is
determined by our clustering model). In matrix form,

#Z = Ap” +e (2)

Under expectation, we have #Z = Ap’, which is a rank-
1 factorization of the N x K worker-task groupsize matrix
#7Z. The resulting pur and A\; can thus be used to rank tasks
or workers. The intuition underlying the low-rank factoriza-
tion is that according to the assumptions, reliable workers
working on clear and well-defined tasks will give unanimous
answers, yielding large group sizes in expectation. Note that
we treat #z;, as a continuous variable rather than an inte-
ger. Section 2.4 discusses how to estimate its expected value.
Given the assumptions, rank-1 factorization is the most
straightforward way to formulate the relationship between
#zik, A\ and pr. More complicated modeling may help, e.g.
assuming a nonlinear relationship or enforcing #Z to be
rank-m rather than rank-1 to find multiple factors for both
workers and tasks that are related to the grouping behavior.
However, we leave these extensions for future work.

2.3 The Clustering Model

To obtain worker reliability and task clarity, a key step
is to estimate the expected group sizes. Although many
clustering methods, such as spectral clustering [13], Kmean-
s and etc., can be applied to first infer the group assignment
of each worker in each task and then calculate the group
sizes, most of them have a difficult time in determining the
unknown cluster number M. To bypass the hard model s-
election problem and also to allow the model to adaptively

grow as more data are provided®, we resort to nonparamet-
ric Bayesian techniques, which have shown great promise in
machine learning, statistics, and many application areas [3,
6, 24]. More specifically, we propose to use the Dirichlet
process (DP) mixture model [3], which is a nonparametric
Bayesian model that can automatically resolve the unknown
number of clusters M. Moreover, as we shall see, for our
DP mixture model, we can analytically compute the expect-
ed group sizes without an intermediate inference step, which
can be expensive and unstable.

Formally, let x;; be the d-dimensional observed answers
of worker i to task k. Typically, x;x is a vector encoding the
worker ¢’s answers to a sequence of questions in task k (e.g.,
a worker gives answers to d questions of a survey). For a
task k, answers of workers form M clusters. Let c;; denote
the center of the cluster that worker ¢ belongs to. For differ-
ent workers ¢ and j, cir = c;i if they are in the same group.
For each task k = 1... K, the DP mixture with a Gaussian
likelihood model can thus be written as:

Gil{ar, G} ~ DP(ar,Gb)

Cik \Gk ~ Gy

Xik|{Cik70'2} ~ /\/'(Xik|Cik,O'21)» (3)
Although in principle, we could use a separate variance o2,
for each worker i and each task k, here we treat them as
one single hyperparameter o for simplicity and will provide
sensitivity analysis of our model with respect to o®. Due
to the fact that the distributions G sampled from a DP
are discrete almost surely [4], there is a non-zero probabil-
ity that two workers belong to the same cluster. Thus, we
will have a partition of x;x according to the sampled values
c;r and automatically infer the cluster number Mj. Alter-
natively, the mixture model can be equivalently represented
using Chinese restaurant process (CRP)* prior, which is:

Cmk ~ G’S
xik|{zik, ¢, 02}~ N(|cs,k,0°T), (4)

where c¢,,r is the cluster center for cluster m at task k. In

3For example, the number of clusters can grow for a DP mix-
ture model when more data are provided. In other words,
DP mixture can have an unbounded number of clusters.

“A CRP is a marginalized version of a DP [6].



this work, we set the base distribution G% as ./\/’(O,J,%OI),
where o7, are the task-specific variances that characterize
how much the means of clusters are scattered around the o-
rigin. We will present a procedure to automatically estimate
them. On the other hand, the hyperparameter o character-
izes the variance within each cluster and need to be specified.
A sensitivity analysis is shown in the experiment.

For the DP mixture, exact inference of the group assign-
ment z;x is intractable. Typical solutions resort to variation-
al or sampling [12] methods. However, these approximate in-
ference methods often lead to local optimum solutions and
can be expensive and sensitive to initialization. Thus, we
need to estimate the expected group sizes in a more efficient
and robust way. Here we derive an analytic solution to the
expected group sizes for the clustering model, without in-
termediate inference. Our approach can be expected to be
faster and more stable compared to those using approximate
inference, analogous to what people have popularly done in
collapsed sampling [7] or collapsed variational inference [20]
in probabilistic latent variable models.

2.4 Expected Group Size

For each task k, we use X = {Xik}zN:1 to denote all its
worker responses. Let WZ’} be a binary random variable that
equals to 1 if workers ¢ and j are in the same group of thought
in task k (W% = 1). From Wl], the group size #z;. for
worker i can be computed as #zjr = Z;.Vzl W,’; Thus, by
linearity of expectation, the expected group size conditioned

on X is:
[#sz |Xk |:Z le :|

ZN:IE (whixe] = ZIP (Whixe), )

where the last equality holds because ij is binary. Note

HZik

that the linearity of expectation still applies even if W” are
not independent variables (e.g., for i # ', VV’C and Wk may

be dependent because they share the same worker ])

To compute the posterior distribution of W, Z], we make
the following approximation:
P (WhIXe) ~ P (WhIDE), (6)

where DY, = |x;; —x;i|? is the squared Euclidean distance®
between responses of workers ¢ and j. The intuition is that
two workers i and j being in the same group is largely due
to their affinity, but is almost independent of other work-
ers’ responses. Our synthetic experiments verify that this
approximation is very accurate (See Section 3 for details).
In practice, this approximation is also reasonable in crowd-
sourcing services like M-Turk, where the onsite communica-
tion between Workers is not allowed. After computing the
likelihood P (Dk| ) and prior P (W = 1), with Bayes’
rule we obtain the posterlor link probability:

1
1+exp (ﬂkij + ,Bko)

P (Wi’} - 1|ij) = (7)

2
where G, = m and Bro = logak + 5 log +g2

5The same result follows when using Euclidean distance.

Please see Appendix for detailed derivation. In this work, we
derive the prior from the exchangeability property of CRP.

Note that the posterior distribution in Eqn. (7) is not
restricted to the CRP-Gaussian cluster model proposed in
Eqn. (4). In general, we can apply other priors or explicitly
define P (WZIE) Besides Gaussian, each cluster’s noise model
can follow any other unimodal distribution and Eqn. (7) still
hold with ij with a different distance metric. The metric
could also be redefined and generalized to arbitrary type of
answers (e.g. binary, categorical).

Interestingly, our link distribution model in Eqn. (7) for
two workers being in the same group has the same logistic
form as the latent distance model for social network analy-
sis [8], where the link distribution model is directly defined.

2.5 Worker Reliability and Task Clarity

Once we have obtained the expected group size #2;;, for
each worker 7 and each task k, the worker reliability A and
task clarity p can be estimated as the first left and right
singular vector corresponding to the largest singular value
of the expected group size matrix #7Z = {#Z:x} (Eqn. (1)).
The entire algorithm is summarized in Alg. 1. Note we do
not need to impose positive constraints for A and g, since the
first left and right singular vector of a matrix with positive
entries is always positive by Perron-Frobenius theorem.

Algorithm 1 Estimation worker reliability and task clarity
in the presence of schools of thought.

1: (Input) The worker responses {Xy} | for K tasks.

2: (Output) Worker reliability A and task clarity .

3: for k = 1:K do

4: Compute the posterior P (Wk |D > that worker 7 and j

are in the same group (Eqn. (7)).
Computer the expected group size #Z;, (Eqn. (5)).
end for
: Run SVD on expected worker-task groupsize matrix H#7:
#Z =UAVT
: Set A = U.1vA11 and p = V.1+/Aq1, where U is the first
column of U, alike for V ;.

2.6 Hyperparameters

Before ending this section, we introduce a simple proce-
dure to estimate the hyperparameters oy and oo, with the
assumption that o is given. As we shall see, our model is
insensitive to the only tunable hyperparameter o. Thus,
although the procedure does not estimate all hyperparame-
ters, it is good enough for our use.

Specifically, after marginalizing cluster partition, we can
obtain P (ij), a distribution of the observable pairwise
squared distances parameterized by the hyperparameters
ag, ogo and o. Similarly we compute P (‘|Xlk||2) Given
o, we can estimate ay and oy from the equations:

E [D'v“} 2 <02 + Uioi> (8)

Y 1+ ok
E [Ixix]?] d(o® + o). )

The derivation is simple by noticing that E [ ] > 0.1
E [D; LW = P (WZIE =1). Similarly for P (”sz" ).

3. SYNTHETIC VALIDATION

Before presenting the experiments on real data, we first
conduct synthetic experiments to show empirically that our
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Figure 2: Validation of posterior link probability (Eqn. (7)) and expected group size (Eqn. (5)). Our theoretical
estimation matches well with the simulation under different parameter settings.

approximation (Eqn. (6)) is valid and our estimation of ex-
pected group sizes is reasonably accurate for the clustering
model. We investigate the performance with four sets of
parameters (a, 09, 0) as shown in Fig. 2. For each set of pa-
rameters, we set d = 12 and generate K = 500 independent
tasks according to Eqn. (4), each with N = 50 workers and
oko = 00, = a. We compare our estimated group sizes
using Eqn. (5) and posterior link probability using Eqn. (7)
with those empirically computed from the simulation. We
can see that our theoretical estimation is very accurate, es-
pecially when the clusters are well-separated (i.e., oo > o).

4. EXPERIMENTS ON M-TURK

Now, we present empirical studies on the real data collect-
ed from Amazon Mechanical Turk (M-Turk). Since our main
focus is to characterize the schools of thought phenomenon
in crowdsourcing, most of the experiments are qualitative.
At the end, we also present some quantitative results to
demonstrate the potential usefulness of our statistical anal-
ysis for predicting gold standard (if exists).

4.1 Experimental setup

For each HIT (i.e., Human Intelligence Task), we design
three missions, each containing several tasks with different
levels of clarity listed as follows. Each worker is required to
finish all the tasks only once. Following [21], all tasks are
vision-related. We expect to see workers of various reliabili-
ty, task-specific schools of thought due to diversity of clarity,
and give insights to possible confusions in human-aided vi-
sion tasks. We emphasize that our analysis is not restricted
to vision tasks and our techniques can be applied to analyze
crowdsourcing data collected in other fields, including text
mining, natural language processing, etc.

Mission 1: Object Categorization. In this mission,
we provide three tasks. In each task, workers are asked to
decide which of the 12 images contain a certain object cat-
egory, namely sky, building and computer. Each task is de-
signed to have a different level of clarity. For task sky, there
are simply 6 images with sky and 6 without sky. For the less
clear task building, there are 4 images with a typical build-
ing, 4 images without a building, and 4 images that contain
a building-like structure. The task computer is the most
confusing one, in which 6 out of 12 images are equally divid-
ed into three subsets, each containing a typical computer, a

Count1 Count2 Count3 Count4
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Figure 3: Object counting task. A counting his-
togram is shown as well as the image. In all tasks,
the cluster structures of worker responses are clear.
For Count3, an outlier response 725 is not shown.

typical object that is not a computer, and a computer-like
electrical appliance (e.g., Apple iPad or Amazon Kindle);
and the other 6 images follow the same strategy of three-
way-division but the objects in the images are elusive and
require some efforts to find.

Mission 2: Object Counting. In this objective mis-
sion, workers are asked to count the number of objects in 4
images. We regard each image as one task. Among the 4
images, the simplest one contains 5 humans, one contains 65
small human-shaped objects that are laborious to count, one
contains 8 animals huddling together and requires efforts to
count, and the most confusing one contains 27 apples that
are of various sizes and partially hidden in tree branches.
All the 4 images have gold standards counted by authors.

Mission 3: Images Aesthetics. In this subjective mis-
sion, there are two tasks with comparably low clarity. In
each task, workers are asked to pick 6 most beautiful images
from 12 images. Among the 12 images, 3 are considered
ordinary-looking, 3 are beautiful, 3 are impressively beauti-
ful, and 3 are of astonishing beauty, according to authors’
criterion.

Fig. 1 and Fig. 3 show example images. All images are
manually picked online. The images are randomly shuffled
when presented to workers to avoid any order bias (“Donkey
vote”). Once we have obtained the responses of workers, we
remove incomplete and duplicate responses from the same
worker and construct a dataset that contains the responses
of 402 unique workers to the 9 tasks. For each worker, the
response includes a 12 dimensional binary vector for each
task in object categorization and image aesthetics missions,
and a 1 dimensional integer for each object counting task.




Clear/Easy task — Confusing/Difficult task

Small
Group Size

Large
Group Size

Task:  Count2 Sky

Building
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Figure 4: Expected worker-task groupsize matrix with rows sorted by worker reliability A and columns sorted
by task clarity pu. The matrix shows a strong factorizable structure. Workers: Reliable workers (the bottom
part of the matrix) show their consistency across different tasks. Coinciding with our assumption, they always
stay with large groups. In addition, from the distribution of reliability, a small portion of the workers can
be identified as low quality (the top part of the matrix). Tasks: Tasks in object categorization mission are
generally clear while tasks in image aesthetics mission are in general ambiguous. Tasks in counting missions
show mixed clarity. Count2 (Counting five humans) is the clearest task, while Count4 (Counting apples) is
the most confusing one. (This figure is best viewed in color.)

Unless explicitly mentioned, in all tasks we set the hyper-
parameter o = 0.2 and estimate a and oo from empirical
expectation (Eqn. (8) and Eqn. (9)). We will also provide a
sensitivity analysis on the hyperparameter o.

4.2 Characterization of Schools of Thought

We apply our low-rank model to all the 9 tasks. The
rank-1 residual error |[#Z — ApT|r/|#Z|F is 0.27, which
means 73% of the energy in #7 has been explained away
by A and p. This shows that our model can fit the data
well. Although we do not jointly model the interaction be-
tween clustering and factorization, the cluster size matrix
#7Z naturally follow the rank-1 factorization, which verifies
our low-rank assumption. It may be theoretically intriguing
to formulate a joint model and design an iterative procedure
for model fitting. However, this may result in an improper
bias on the data.

Below, we first examine the existence of schools of thought
and its two major latent factors — worker reliability and task
clarity, and then provide detailed analysis on worker relia-
bility.

Visualization of schools of thought. We show the
patterns of schools of thought for the tasks in object catego-
rization and image aesthetics missions as the posterior link
probability matrix (Fig. 1) computed from Eqn. (7). For
better visualization, we set « = 750, 0 = 0.6 and oo = 1.
Rather than posterior link probability matrix, histograms
are shown separately for each of the 4 counting tasks (Fig. 3).
Different visualization is used because each counting task is
done separately, while for the other missions, workers’ re-
sponses are based on 12 images at a time.

Task-specific schools of thought. From Fig. 1 and
Fig. 3 we can clearly see the task-dependent schools of thought.
Even for the simplest task (e.g., sky) and tasks with ground
truth (e.g., object counting), there are still substantially di-
verse answers. For task sky, a large group of people think
the outer space looking from the Moon is not sky, or a glow-
ing bluish icy ceiling in a cave is sky. For counting, some
workers think the image with 65 human-like drawings does
not contain humans and give zero answer. For more compli-
cated and confusing tasks, the number of clusters goes up,
and each cluster size goes down. In subjective tasks, almost
everyone has their own responses and the cluster structure
is almost invisible.

Distribution of worker reliability. Fig. 4 shows the
structure of the expected worker-task groupsize matrix #Z
as well as the estimated worker reliability A and task clarity
p. From the worker reliability plot, most of the workers are
comparably reliable and they tend to stay consistently in
larger groups in different tasks. A small portion of workers
did a very poor job, consistent with the observation in [19].
Among the three types of missions, object categorization is
relatively clear, image aesthetics is in general very subjective
and vague. Counting mission shows mixed results. Nearly
all workers are correct in task Count2, making it the clearest
one. One the other hand, counting apples of varied size with
background clutters (task Count/) is extremely confusing.

4.3 Closer Examination of Worker Reliability

In this subsection, we present a closer examination of the
estimated worker reliability and compare it with baselines.
Besides, we also show how to use it for improving prediction
of gold standard for objective tasks.
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Ranking workers. To verify the computed worker re-
liability A, we first estimate A on the 5 tasks (sky, build-
ing, computer, beautyl, beauty?), then check if the estima-
tion makes sense in the remaining four objective tasks. For
checking, we rank the workers according to A, compute the
answer variance 5= for reliable workers, and the answer vari-
ance Gy for unreliable workers, and then compare the two
variances. If 57 > 3%, which means workers labeled as
“unreliable” give inconsistent answers compared to those la-
beled as “reliable”, then the ranking is meaningful and can
be generalized to other unseen tasks. Specifically, 5% is com-
puted from D most reliable workers, and is averaged over 4
remaining counting tasks. Similarly for ;. The result is
shown in Fig. 5. We vary D from 10 to 50, and vary o from
0.01 to 0.2 for sensitivity analysis. A subset of workers give
zero responses to task Countl, (presumably thinking those
drawings are not humans). In the second column, we also
show the results after excluding zeros from ranking.

It is clear that in most of the cases, the reliable workers
estimated on one set of tasks give answers that are much
more consistent (i.e., with a lower variance) than the unre-
liable ones in a different set of tasks. This suggests that the
worker reliability is generalizable from one task to anoth-
er task, which is consistent with what we have observed in
Fig. 4. From the results, we can also see that our approach
is relatively insensitive to the change of hyperparameter o
and parameter D.

Comparison with baseline clustering models. As we
have stated in Section 2.3, we can use alternative methods to
perform the clustering on worker responses. Now, we com-
pare the performance of our method (o = 0.2) with spectral
clustering [13], PCA-Kmeans and Gibbs sampling on the DP
mixture model in Eqn. (3). Note that all these baselines
require inference on the cluster assignment of each work-
er in order to compute the group sizes, while our method
does not. For spectral clustering, we take the L = 5 to
70 smallest eigenvectors of normalized graph Laplacian and
normalize them to be unit vectors as the low-dimensional
embedding, on which Kmeans are performed with L cluster-
s. For PCA-Kmeans, we first reduce the dimension of the
workers’ response to 5 using PCA, and run Kmeans with
L =5 to 70 clusters. For Gibbs sampling, we use the Al-
gorithm 8 in [12] with the same set of hyperparameters as
estimated in Eqn. (9) with o = 0.2.

Table 1: Time cost comparison between the meth-
ods using various baseline clustering algorithms and
ours.

Methods Time (sec)
Ours 1.41 +£0.05
Spectral Clustering | 3.90 £ 0.36
PCA-Kmeans 0.19+0.06
Gibbs Sampling 53.63 £ 0.19

Fig. 6 shows the performances of different methods. All
the baselines are repeated for 500 times with random ini-
tialization. We present their best average performances and
its associated standard deviations, achieved by tuning the
hyperparameter (i.e., the number of clusters). We can see
that our approach is comparable with baselines but is much
more stable because it does not require initialization. Thl. 1
shows the average time cost over 50 runs. Ours is faster
than spectral clustering and Gibbs sampling. PCA-Kmeans
is the fastest since it does not compute pairwise distance,
but its performance is worse than ours.

Table 2: Performance comparison on predicting the
gold standard counts for the four counting tasks.

Cntl | Cnt2 | Cnt3 | Cnt4
Ours. D=5 65 5 8 26
Ours. D =10 65 5 8 26
Ours. D =20 65 5 8 25.6
MV 53.7 5.0 9.9 22.9
MV (median) 60 5 8 24
LFC [15] 56 5 8 24
MDW 21] (c = 1)
(top-10 pred., 50 init.) 63.7 5 8 25.96
MDW [21] (c = 3)
(top-10 pred., 50 init.) 65.01 5 8 25.48
| Gold Standard [ 656 ] 5 | 8 [ 27 |

Prediction of gold standard. As a specific case of
schools of thought, our approach can also be applied for
those tasks having one unanimous answer (e.g., the count-
ing tasks) and predict the gold standard. Here, we provide
one example that uses selective “majority voting”, namely,
we first select D most reliable workers based on the estimat-
ed worker reliability A, and then apply majority voting for
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Figure 6: Comparison between (a) our method (with o = 0.2), (b) spectral clustering, (c) PCA+Kmeans, and
(d) Gibbs sampling, on the difference 67 — &%, where 7 is the variance of the answers of D most unreliable
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prediction. An alternative method would be weighing the
responses of workers with their reliability. Yet we obtain
the same performance.

Thbl. 2 shows the comparison of our method to three very
competitive baseline methods on predicting the count num-
bers for 4 counting tasks. The baselines include the classic
inclusive “majority voting” (MV) heuristic, which performs
over all the 402 workers, the “learning from crowds” (LFC)
method [15], which iteratively estimates workers’ precisions
and tasks’ gold standard using an EM procedure, and the
“multidimensional wisdom of crowds” (MDW) method [21]
as we have discussed in the introduction. For LFC, we follow
Eqn.(10)-(11) in [15] and use MV as the initial guess of gold
standard as suggested in the paper. For MDW, since it does
not handle the case that the gold standard is in the contin-
uous domain, we first find maximum a posteriori estimation
of the workers’ precisions, treat them as workers’ reliability,
and estimate the gold standard by averaging the answers of
top-10 reliable workers. In MDW, each task k is a hidden
c-dimensional vector v and each worker is represented as a
set of weights in the same dimension. Both need to be es-
timated from the data. In the experiment, we choose ¢ = 1
and ¢ = 3.

We can see that our selective MV outperforms all the three
baselines, especially on Count! and Count/, and our pre-
diction matches the gold standard very well. MDW has
comparable performance yet it is quite sensitive to the ini-
tialization. When d = 1, MDW gives the same prediction
as ours (i.e. (65,5,8,26)) in most random initializations,
however, it also gives (0, 5,8,24.05) if not initialized prop-
erly. The reason is that, although most workers vote for 65
(called “65-voters”), there is a small group voting for Os (“0-
voters”) on Counti. If MDW falls into this small cluster and
regards O-voters as more reliable than 65-voters, the gold s-
tandard estimation of Count/ will also change. In contrast,
ours always rate 65-voters over 0-voters since 65-voters form
a larger cluster than 0O-voters. Thus, ours gives a deter-
ministic answer to worker reliability. Besides, on the four
counting tasks, using the stopping criterion

\/Z vttt - vzu2/\/2 Vil < 107
k k

(where vy, is the hidden representation of task k in itera-
tion t), MDW spends 3.25 £ 3.34 seconds for ¢ = 1, and

4.26 + 3.70 seconds for ¢ = 3, averaged over 50 random ini-
tializations. The large variation in the rate of convergence
is due to different initialization. In comparison, our method
runs for 0.68 seconds, is insensitive to the parameter D and
the value of the hyperparameter o, and has no initialization.

S. CONCLUSIONS AND FUTURE WORK

This paper formally analyzes the schools of thought phe-
nomenon and its two key underlying factors, worker reliabil-
ity and task clarity, in crowdsourcing by presenting a com-
putational model based on a low-rank assumption, which
characterizes the relationships between the group sizes of
worker responses and the two key factors. Furthermore, the
expected group sizes can be estimated analytically instead
of performing an expensive and unstable inference step. We
report real experiments on Amazon Mechanical Turk.

In terms of time cost, the major bottleneck of our work is
to compute the groupsize matrix #Z, which has time com-
plexity of O(K'N?) (K is the number of tasks and N is the
number of workers). However, if N is large, given worker ¢,
we can sample a few other workers to obtain an unbiased
estimate of #z;x, yielding approximately O(K N) complexi-
ty. Another interesting future direction is to handle the case
of missing data that some workers may not give answer to
some tasks. In such a case, how to estimate the group size
for observed answers and how to factorize the group size
matrix #Z in the presence of missing entries deserve more
exploration.

From a learning point of view, our analysis could pro-
vide insights for developing better predictive tools in several
ways. For example, we have shown that high quality labels
can be selected from the answers of workers who enjoy top
ranking in worker reliability for building better predictive
models. For future work, we can acquire new labels from
those workers that have higher reliability in the context of
active learning [14]. Finally, our analysis could help the
market price “high-reputation” workers [2].
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Appendix: Derivation of posterior distribution
P (W} = 1|D§)
By the Bayes’ rule, we have
P (Wi =10}
P (D5 Wi = 1) P (Wi = 1)
P (DE|WE =0)P(WE =0) +P(DEIWE =1)P (W) =1)’

where the likelihood term P (D’C |W,
(W’“ = 1) are computed as follows
The likelihood term P (DJ;|W}). For W) = 1, both
X, and X, are generated 1ndependently from the same
cluster center with variance o2, thus we have x;; — Xjp ~
N(:10,20°). Therefore, Df; = |xix — x;|° satisfies x* dis-

tribution with the following pdf:
Dk
kyd/2-1 .

P (D5 = 1) = (Dl d, o)

1 1
where d is the dimension of the workers’ responses. Simi-
larly, for WZ; = 0, by integrating their cluster centers out, we

) and the prior term

= 24/21'(d/2) (0-2)d/2(

can show x;i, X;x are independently generated from N(- |O o+
0?). Thus we have P (D;|W}; = 0) = ¢(Df;; d, 0> + 7).
The prior term P(Wl’j = 1). By the exchangeability
property of Chinese restaurant process, all workers are equal.
Thus

IP’(W{;- = 1) =P (Wi =1)
:P(Z1 :l)P(ZQZHZl:l)
1
T 1l4a

Combining the two parts, we thus obtain the posterior
distribution P (W} = 1|D};):

1
1+ exp (BkDfJ + 5k0)

P (Wh =1D}) =

where 8, = and Bro = logax + £ log

40'2(o'k +02) +0.2
Note the same derlvatlon follows if we use Euchdean dis-
tance l;jx = ||xi; — Xax| and
P (Wf; - 1|zi]~,k) —P (Wi’} - 1|ij)
1
1 + exp (/Bkl2 s+ ﬁko)

where is exactly the same as the one using squared Euclidean
distance.




