
AI	in	Games:	Achievements	
and	Challenges

Yuandong	Tian
Facebook	AI	Research



Game	as	a	Vehicle	of	AI

Less	safety	and	
ethical concerns

Faster	than	real-time

Infinite supply	of	
fully labeled	data

Controllable and replicable Low cost	per sample

Complicated	dynamics	
with	simple	rules.



Game	as	a	Vehicle	of	AI

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



Game	as	a	Vehicle	of	AI

Better	Games

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

ChessGo Poker



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

Breakout (1978)Pong (1972)



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

Super Mario Bro (1985) Contra (1987)



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

Doom (1993) KOF’94 (1994) StarCraft (1998)



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

Counter Strike (2000) The Sims 3 (2009)



2000s 2010s1990s1970s

Game	Spectrum

Good old days 1980s

GTA V (2013)StarCraft II (2010) Final Fantasy XV (2016)



Game	as	a	Vehicle	of	AI

Better	Algorithm/System Better	Environment

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



Our	work

DarkForest Go	Engine
(Yuandong	Tian,	Yan	Zhu,	ICLR16)

Doom	AI
(Yuxin Wu,	Yuandong	Tian,	ICLR17)

ELF:	Extensive	Lightweight	and	Flexible	Framework
(Yuandong	Tian	et	al,	arXiv)

Better	Algorithm/System Better	Environment



How	Game	AI	works

Even	with	a	super-super	computer,	
it	is	not	possible	to	search	the	entire	space.



How	Game	AI	works

Extensive	search Evaluate	

Even	with	a	super-super	computer,	
it	is	not	possible	to	search	the	entire	space.

Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

Current	game	situation

Lufei Ruan vs. Yifan Hou (2010)



How	Game	AI	works

Extensive	search Evaluate	 Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

How	many	action	do	you	have	per	step?
Checker:	a few possible	moves
Poker:	a few possible	moves
Chess:	30-40 possible	moves
Go:	100-200 possible	moves
StarCraft:	50^100	possible	moves

Alpha-beta	pruning	+	Iterative	deepening	[Major	Chess	engine]

Monte-Carlo	Tree	Search	+	UCB	exploration	[Major	Go	engine]
???

Counterfactual	Regret	Minimization	[Libratus,	DeepStack]

Current	game	situation



How	Game	AI	works

Extensive	search Evaluate	 Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

How	complicated	is	the	game	situation?	How	deep	is	the	game?

Chess
Go
Poker
StarCraft

Linear	function	for	situation	evaluation	[Stockfish]

Deep	Value	network	[AlphaGo,	DeepStack]

Random	game	play	with	simple	rules	[Zen,	CrazyStone,	DarkForest]

End	game	database

Rule-based

Current	game	situation



How	to	model	Policy/Value	function?

• Many	manual	steps
• Conflicting	parameters,	not	scalable.
• Need	strong	domain	knowledge.	

• End-to-End	training
• Lots	of	data,	less	tuning.

• Minimal	domain	knowledge.
• Amazing	performance

Traditional	approach Deep	Learning

Non-smooth	+	high-dimensional	
Sensitive	to	situations.	One	stone	changes	in	Go	leads	to	different	game.



Case study: AlphaGo
• Computations

• Train	with	many GPUs	and	inference	with	TPU.

• Policy	network
• Trained	supervised	from	human	replays.	
• Self-play	network	with	RL.	

• High	quality	playout/rollout	policy
• 2	microsecond	per	move,	24.2%	accuracy. ~30%
• Thousands	of	times	faster	than	DCNN	prediction.

• Value	network
• Predicts	game	consequence	for	current	situation.	
• Trained	on	30M	self-play	games.	

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo
• Policy	network	SL	(trained	with	human	games)	

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo
• Fast	Rollout	(2	microsecond),	~30% accuracy

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



Monte	Carlo	Tree	Search

2/10

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40
2/10

1/1

21/31

11/19

10/11

10/12

1/8

23/41

1/1

(a) (b) (c)

Tree policy
Default policy

Aggregate	win	rates,	and	search	towards	the	good	nodes.	

PUCT



AlphaGo
• Value	Network (trained via 30M self-played games)
• How data are collected?

Game start

Current state

Sampling SL network
(more diverse moves)

Game terminates

Sampling RL network (higher win rate)
Uniform
sampling

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo
• Value	Network (trained via 30M self-played games)

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



Our	work



Our	computer	Go	player: DarkForest

• DCNN	as	a	tree	policy	
• Predict	next	k	moves	(rather	than	next	move)
• Trained	on	170k	KGS	dataset/80k	GoGoD,	57.1% accuracy.
• KGS	3D	without	search	(0.1s	per	move)
• Release	3	month	before	AlphaGo,	<	1%	GPUs	(from	Aja	Huang)

Yuandong Tian and Yan Zhu, ICLR 2016

Yan Zhu



Name

Our/enemy	liberties

Ko location

Our/enemy	stones/empty	place

Our/enemy	stone	history

Opponent rank

Feature	used	for	DCNN

Our	computer	Go	player: DarkForest



Pure	DCNN

Win	rate	between	DCNN	and	open	source	engines.

darkforest:	Only	use	top-1	prediction,	trained	on	KGS
darkfores1:	Use	top-3	prediction,	trained	on	GoGoD
darkfores2:	darkfores1 with	fine-tuning.



Monte	Carlo	Tree	Search

2/10

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40
2/10

1/1

21/31

11/19

10/11

10/12

1/8

23/41

1/1

(a) (b) (c)

Tree policy
Default policy

Aggregate	win	rates,	and	search	towards	the	good	nodes.	



Win	rate	between	DCNN	+	MCTS	and	open	source	engines.

darkfmcts3:	Top-3/5,	75k	rollouts,	~12sec/move,	KGS	5d

94.2%

DCNN + MCTS



• DCNN+MCTS
• Use	top3/5	moves	from	DCNN,	75k	rollouts.
• Stable	KGS	5d.	Open	source.	
• 3rd place	on	KGS	January	Tournaments
• 2nd place	in	9th UEC	Computer	Go	Competition	(Not	this	time	J)

DarkForest versus	Koichi	Kobayashi	(9p)	

Our	computer	Go	player: DarkForest

https://github.com/facebookresearch/darkforestGo



Win	Rate	analysis	(using	DarkForest)	
(AlphaGo versus	Lee	Sedol)



First	Person	Shooter	(FPS)	Game

Play	the	game	from	the raw image!

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu



Network	Structure

Simple	Frame	Stacking is	very	useful	(rather	than	Using	LSTM)



Actor-Critic Models

Update Policy	network

Update	Value	network

Reward

Encourage	actions	leading	to	states	with	high-than-expected	value.
Encourage	value	function	to	converge	to	the	true	cumulative	rewards.
Keep	the	diversity	of	actions

sT

s0

V (sT )



Curriculum	Training

From	simple	to	
complicated



Curriculum Training



VizDoom AI	Competition	2016 (Track1)

Rank Bot 1 2 3 4 5 6 7 8 9 10 11 Total
frags

1 F1 56 62 n/a 54 47 43 47 55 50 48 50 559
2 Arnold 36 34 42 36 36 45 36 39 n/a 33 36 413
3 CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 393

Videos:
https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

We	won	the	first	place!





Visualization	of	Value	functions
Best	4	frames	(agent	is	about	to	shoot	the	enemy)

Worst	4	frames	(agent	missed	the	shoot	and	is	out	of	ammo)



ELF:	Extensive,	Lightweight	and	Flexible	
Framework	for	Game	Research

• Extensive
• Any	games	with	C++	interfaces	can	be	incorporated.

• Lightweight
• Fast.	Mini-RTS	(40K	FPS	per	core)
• Minimal	resource	usage	(1GPU+several	CPUs)

• Flexible
• Environment-Actor	topology
• Parametrized game	environments.
• Choice	of	different	RL	methods.	

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick (Submitted to NIPS 2017)

Arxiv:	https://arxiv.org/abs/1707.01067

Larry Zitnick

Qucheng Gong Wendy Shang

Yuxin Wu

https://github.com/facebookresearch/ELF



How RL system works

Game	1

Game	N

Game	2

Consumers (Python)

Actor

Model

Optimizer

Process 1

Process 2

Process N

Replay Buffer



ELF	design

Plug-and-play; no worry about the concurrency anymore.

Game	1

Game	N

Daemon
(batch

collector)

Producer	(Games	in	C++)

Game	2

History buffer

History buffer

History buffer

Consumers (Python)

Reply

Batch	with
History	info	

Actor

Model

Optimizer





Possible	Usage

• Game	Research
• Board	game	(Chess,	Go,	etc)
• Real-time	Strategy	Game

• Complicated RL algorithms.
• Discrete/Continuous	control

• Robotics

• Dialog	and	Q&A	System



Initialization



Main	Loop



Training



Self-Play



Multi-Agent



Monte-Carlo Tree Search

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40



Flexible	Environment-Actor	topology

(b) Many-to-One (c) One-to-Many

Environment Actor

(a) One-to-One
Vanilla A3C BatchA3C, GA3C Self-Play, 

Monte-Carlo Tree Search

Environment Actor

Environment Actor

Environment

Environment Actor

Environment

Actor

Environment Actor

Actor



RLPytorch

• A	RL	platform	in	PyTorch
• A3C	in	30	lines.
• Interfacing	with	dict.



Architecture Hierarchy

ELF

RTS EngineALEGo
(DarkForest)

Mini-RTS Capture
the Flag

Tower
Defense

An extensive framework that can host many games.

Specific game engines.

EnvironmentsPong Breakout



A	miniature	RTS	engine

Enemy base

Your base

Your barracks

Worker

Enemy unit

Resource Game Name Descriptions Avg Game Length

Mini-RTS Gather resource and build 
troops to destroy 
opponent’s base. 

1000-6000 ticks 

Capture the Flag Capture the flag and bring 
it to your own base

1000-4000 ticks

Tower Defense Builds defensive towers to 
block enemy invasion.

1000-2000 ticks

Fog of War



Simulation Speed

Platform ALE RLE Universe Malmo

FPS 6000 530 60 120

Platform DeepMind Lab VizDoom TorchCraft Mini-RTS
FPS 287(C) / 866(G)

6CPU	+	1GPU
7,000 2,000 (Frameskip=50) 40,000



Training AI

Conv ReLUBN

x4

Policy

Value

Game visualization Game internal data
(respecting	fog	of	war)

Location of all workers

Location of all melee tanks

Location of all range tanks

HP portion

Using	Internal Game data and A3C.	
Reward	is	only	available	once	the	game	is	over.

Resource



MiniRTS

Building	that	can	build	workers	and	collect	resources.	

Resource	unit	that	contains	1000	minerals.	

Worker	who	can	build	barracks	and	gather	resource.	
Low	speed	in movement and	low	attack	damage.	

Building	that	can	build	melee	attacker	and	range	attacker.	

Tank	with	high	HP,	medium	movement	speed,	short	attack	
range,	high	attack	damage.	

Tank	with	low	HP,	high	movement	speed,	long	attack	range	and	
medium	attack	damage.	



Training AI
9 discrete actions.

No. Action name Descriptions

1 IDLE Do nothing

2 BUILD	WORKER If the base is idle, build a worker

3 BUILD	BARRACK Move	a	worker	(gathering	or	idle)	to	an	empty	place	and	build	a	barrack.	

4 BUILD	MELEE	ATTACKER	 If	we	have	an	idle	barrack,	build	an	melee	attacker.	

5 BUILD	RANGE	ATTACKER	 If	we	have	an	idle	barrack,	build	a range attacker.	

6 HIT	AND	RUN	
If	we	have	range	attackers,	move	towards	opponent	base	and	attack.	Take	
advantage	of	their	long	attack	range	and	high	movement	speed	to	hit	and	
run	if	enemy	counter-attack.	

7 ATTACK	 All	melee	and	range	attackers	attack	the	opponent’s	base.	

8 ATTACK	IN	RANGE	 All	melee	and	range	attackers	attack	enemies	in	sight.	

9 ALL	DEFEND All	troops	attack	enemy	troops	near	the	base	and	resource.	



Win rate against rule-based AI

Frame skip AI_SIMPLE AI_HIT_AND_RUN

50 68.4(±4.3) 63.6(±7.9)	

20 61.4(±5.8)		 55.4(±4.7)

10 52.8(±2.4) 51.1(±5.0)	

SIMPLE
(median)

SIMPLE
(mean/std)

HIT_AND_RUN
(median)

HIT_AND_RUN
(mean/std)

ReLU 52.8 54.7(±4.2) 60.4 57.0(±6.8)

Leaky ReLU 59.8 61.0(±2.6) 60.2 60.3(±3.3)

ReLU + BN 61.0 64.4(±7.4) 55.6 57.5(±6.8)

Leaky ReLU + BN 72.2 68.4(±4.3) 65.5 63.6(±7.9)

Frame skip (how often AI makes decisions)

Network Architecture Conv ReLUBN



Effect of T-steps

Large T is better.



Transfer Learning and Curriculum Training
AI_SIMPLE AI_HIT_AND_RUN Combined

(50%SIMPLE+50% H&R)

SIMPLE 68.4	(±4.3) 26.6(±7.6) 47.5(±5.1)

HIT_AND_RUN 34.6(±13.1)	 63.6	(±7.9)	 49.1(±10.5)

Combined
(No curriculum) 49.4(±10.0)	 46.0(±15.3)	 47.7(±11.0) 

Combined 51.8(±10.6)	 54.7(±11.2)	 53.2(±8.5)	

AI_SIMPLE AI_HIT_AND_RUN CAPTURE_THE_FLAG

Without
curriculum training 66.0 (±2.4) 54.4 (±15.9) 54.2	(±20.0)

With
curriculum training 68.4 (±4.3) 63.6	(±7.9) 59.9	(±7.4)

Mixture	of	SIMPLE_AI	
and	Trained	AI

Training	time

99%

Highest win rate against AI_SIMPLE: 80%



Monte Carlo Tree Search

MiniRTS (AI_SIMPLE) MiniRTS (Hit_and_Run)
Random 24.2 (±3.9) 25.9 (±0.6)
MCTS 73.2 (±0.6) 62.7 (±2.0)

MCTS uses complete information and perfect dynamics
MCTS evaluation is repeated on 1000 games, using 800 rollouts.





Future	Work

• Richer	game	scenarios.	
• Multiple	bases	(Expand?	Rush?	Defending?)
• More	complicated	units.	

• More	Realistic	action	space
• Assign	one	action	per	unit	

• Model-based	Reinforcement	Learning
• MCTS with perfect information and perfect dynamics also achieves ~70% winrate

• Self-Play	(Trained	AI	versus	Trained	AI)	



Thanks!


