Supplementary Material for Paper Submission 307

Anonymous Author(s)

October 12, 2013

Contents

1 Image Formation Model

We repeat our model here from the paper for readability. The template image T and the distorted image I_p is related by the followin equality:

$$
I_p(W(x; p)) = T(x) \tag{1}
$$

where, $W(x; p)$ is the deformation field that maps the 2D location of pixel x on the template with the 2D location of pixel $W(x; p)$ on the distorted image I_p .

1.1 Parameterization of Deformation Field $W(x; p)$

 $W(x; p)$ is parameterized by the displacements of K landmarks. Each landmark i has a rest location l_i and displacement $p(i)$. Both of them are 2-dimensional column vectors. For any x, its deformation $W(x; p)$ is a weighted combination of the displacements of K landmarks:

$$
W(x; p) = x + \sum_{i=1}^{K} b_i(x) p(i)
$$
 (2)

whose $b_i(x)$ is the weight from landmark i to location x. Naturally we have $\sum_i b_i(x) = 1$ (all weights at any location sums to 1), $b_i(l_i) = 1$ and $b_i(l_j) = 0$ for $j \neq i$. We can also write Eqn. [2](#page-1-4) as the following matrix form:

$$
W(x,p) = x + B(x)p \tag{3}
$$

where $B(x) = [b_1(x), b_2(x), \ldots, b_K(x)]$ is a K-dimensional column vector and $p = [p(1), p(2), \ldots, p(K)]$ ^T is a K-by-2 matrix. Each row of p is the displacement $p(i)$ ^T of landmark i.

1.2 The bases function $B(x)$

Given any pixel location x, the weighting function $b_i(x)$ satisfies $0 \leq b_i(x) \leq 1$ and $\sum_i b_i(x) = 1$. For landmark i, $b_i(l_i) = 1$ and $b_i(l_j) = 0$ for $j \neq i$.

We assume that $B(x) = [b_1(x), b_2(x), \ldots, b_K(x)]$ is smoothly changing:

Assumption 1 There exists c_B so that:

$$
||(B(x) - B(y))p||_{\infty} \le c_B ||x - y||_{\infty} ||p||_{\infty}
$$
\n
$$
(4)
$$

Intuitively, Eqn. [4](#page-1-5) measures how smooth the bases change over space.

Lemma 1 (Unity bound) For any x and any p, we have $||B(x)p||_{\infty} \le ||p||_{\infty}$.

Proof

$$
||B(x)p||_{\infty} = \max\{\sum_{i} b_i(x)p_i^x, \sum_{i} b_i(x)p_i^y\} \le \max\{\max_i p_i^x \sum_{i} b_i(x), \max_i p_i^y \sum_{i} b_i(x)\} = ||p||_{\infty}
$$
\n(5)

using the fact that $\sum_i b_i(x) = 1$ for any x. П

1.3 Image Patch

We consider a square $R = R(x, r) = \{y : ||x - y||_{\infty} \le r\}$ centered at x with side 2r. Given an image I treated as a long vector of pixels, the image content (patch) $I(R)$ is a vector obtained by selecting the components of I that is spatially contained in the square R. $S = S(x, r)$ is the subset of landmarks that most influences the image content at $I(R)$. The parameters on the subset are denoted as $p(S)$. Fig. [1](#page-2-2) shows the relationship.

Since $p(S)$ is a $|S|$ -by-2 matrix, there are at most $2|S|$ apparent degrees of freedom for patch $I(R)$. How large is $|S|$? If landmarks are distributed uniformly (e.g., on a regular grid), $|S|$ is proportional to $Area(R)$, or to the square of the patch scale (r^2) , which gives $2|S| \propto r^2$.

On the other hand, if the overall effective degree of freedom is d , then no matter how large $2|S|$ is, $p(S)$ contains dependent displacements and the effective degree of freedom in R never

Figure 1: Notations. (a) The image I, (b) The image patch $I(R)$ centered at x with side $2r$. (c) The subset S of landmarks that most influences the patch content $I(R)$.

exceeds d. For example, if the entire image is under affine transform which has 6 degrees of freedom, then each patch $I(R)$ of that image, regardless of its scale and number of landmarks, will also under affine transform. Therefore the degrees of freedom in $I(R)$ will never exceed 6.

Given the two observations, we can assume:

Assumption 2 (Degrees of Freedom for Patches) The local degrees of freedom of a patch (x, r) is min $(d, 2|S|)$.

2 Main Theorem

2.1 Pull-back conditions

Like [\[1\]](#page-10-1), the pull-back operation takes (1) a distorted image I_p with unknown parameter p and (2) parameters q, and outputs an less distorted image $H(I_p, q)$:

$$
H(I_p, q)(x) \equiv I_p(W(x; q))\tag{6}
$$

Ideally, $H(I_p, q)$ is used to simulate the appearance of I_{p-q} without knowing the true parameters p. This is indeed the case for $p = q$, since from Eqn. [1](#page-1-6) we get $H(I_p, p) = T$. In general, it is not the case for $p \neq q$. However, the difference is bounded [\[1\]](#page-10-1):

$$
||H(I_p, q) - I_{p-q}|| \le C_5 ||p - q|| \tag{7}
$$

for some constant C_5 characterizing the amount of pull-back error. Similarly, we can also prove the patch version:

Theorem 2 For patch (x, r) , if $||p - q||_{\infty} \leq r$, then

$$
||H(I_p, q)(R) - I_{p-q}(R)|| \le \eta(x, r)r
$$
\n(8)

where $\eta(x,r) = c_B c_q c_G A r e a_j$. Note $c_G = \max_{x \in R} |\nabla I_p(x)|_1$, $c_q = \frac{r_1}{1-\bar{\gamma}}$ and c_B is defined in Eqn. [4.](#page-1-5)

Proof For any $y \in R = R(x, r)$, by definitions of Eqn. [6](#page-2-3) and Eqn. [1,](#page-1-6) we have:

$$
H(I_p, q)(\mathbf{y}) = I_p(W(y; q)) \tag{9}
$$

$$
I_{p-q}(\mathbf{y}) = T(W^{-1}(y; p-q)) = I_p(W(W^{-1}(y; p-q), p))
$$
\n(10)

Now we need to check the pixel distance between $u = W(y; q)$ and $v = W(W^{-1}(y; p - q), p)$. Note both are pixel locations on distorted image I_p . If we can bound $||u - v||_{\infty}$, then from I_p 's appearance, we can obtain the bound for $|H(I_p, q)(y) - I_{p-q}(y)|$.

Denote $z = W^{-1}(y; p - q)$ which is a pixel location on the template. By definition we have:

$$
y = z + B(z)(p - q)
$$
\n⁽¹¹⁾

then we have $||y - z||_{\infty} = ||B(z)(p - q)||_{\infty} \le ||p - q||_{\infty} \le r$ by Lemma [1.](#page-1-7) On the other hand, we have:

$$
u - v = W(y, q) - W(z, p) \tag{12}
$$

$$
= y + B(y)q - z - B(z)p \tag{13}
$$

$$
= B(z)(p - q) - B(z)p + B(y)q
$$
\n(14)

$$
= (B(y) - B(z))q \tag{15}
$$

Thus, from Eqn. [4](#page-1-5) we have:

$$
||u - v||_{\infty} \leq c_B ||y - z||_{\infty} ||q||_{\infty} \leq (c_B ||q||_{\infty})r
$$
\n(16)

In the algorithm, $q = \hat{p}^t$ is the summation of estimations from all layers 1 to $t - 1$. Therefore:

$$
\|q\|_{\infty} = \|\hat{p}^t\|_{\infty} = \|\sum_{j=1}^{t-1} \tilde{p}^j\| \le \sum_{j=1}^{t-1} \|\tilde{p}^j\| \le \frac{r_1}{1-\bar{\gamma}}
$$
(17)

and is thus bounded. Thus we have:

$$
|H(I_p, q)(y) - I_{p-q}(y)| = |I_p(W(y; q)) - I_p(W(W^{-1}(y; p-q), p))| = |I_p(u) - I_p(v)| \tag{18}
$$

$$
\leq |\nabla I_p(\xi)|_1 \|u - v\|_{\infty}
$$
 (19)

where $\xi \in Line - Seg(u, v)$. Collecting Eqn. [19](#page-3-2) over the entire region R gives the bound. When the algorithm runs, on the distorted image I_p , the rectangle R moves from the initial location (when $q = 0$) to the final destination $q = p$.

Practically the pull-back error $\eta(x, r)$ is very small and can be neglected.

2.2 Relaxed Lipchitz Conditions

We put a generalized definition of relaxed Lipchitz Conditions here. The definition of relaxed Lipchitz conditions in our main paper is a special case for $\eta(x, r) = 0$.

Assumption 3 (Relaxed Lipchitz Condition with pull-back error $\eta(x, r) > 0$) There exists $0 < \alpha(x,r) \leq \gamma(x,r) < 1$, $A(x,r) > 0$ and $\Gamma(x,r) > A(x,r) + 2\eta(x,r)$ so that for any p_1 and p_2 with $||p_1||_{\infty} \leq r$, $||p_2||_{\infty} \leq r$:

$$
\Delta p \le \alpha r \quad \Longrightarrow \quad \Delta I \le Ar \tag{20}
$$

$$
\Delta p \ge \gamma r \quad \Longrightarrow \quad \Delta I \ge \Gamma r \tag{21}
$$

 $for \ \Delta p \equiv ||p_1(S) - p_2(S)||_{\infty} \ \text{and} \ \Delta I \equiv ||I_{p_1}(R) - I_{p_2}(R)||.$

Here $||x||_{\infty} \equiv \max_i |x_i|$. The error $\eta(x,r)$ is from the property of pull-back operation (See Theorem [2\)](#page-2-4).

2.3 Guaranteed Nearest Neighbor

Theorem 3 (Guaranteed Nearest Neighbor for Patch j) For any image patch (x, r) , we have subset $S = S(x, r)$ and image region $R = R(x, r)$. Suppose we have a distorted image I so that $||I(R) - I_p(R)|| \leq \eta r$ with $||p||_{\infty} \leq r$, then with

$$
\min\left(c_{SS}\left\lceil\frac{1}{\alpha}\right\rceil^{d}, \left\lceil\frac{1}{\alpha}\right\rceil^{2|S|}\right) \tag{22}
$$

number of samples properly distributed in the hypercube $[-r, r]^{2|S|}$, we can compute a prediction $p(S)$ so that

$$
\|\hat{p}(S) - p(S)\| \le \gamma r \tag{23}
$$

using Nearest Neighbor in the region R with image metric. Here d is the effective degrees of freedom while $2|S|$ is the apparent degrees of freedom.

Figure 2: Illustration for proof of Guaranteed Nearest Neighbor.

Proof Since $||p||_{\infty} \leq r$, by definition we have $||p(S)||_{\infty} \leq r$ and similarly $||q(S)||_{\infty} \leq r$. Then using Assumption [2](#page-2-5) and applying Thm. [7](#page-7-2) and Thm. [9,](#page-8-0) if the number of samples needed follows [22,](#page-3-3) then there exists a data sample q so that its slicing $q(S)$ satisfies:

$$
||p(S) - q(S)||_{\infty} \le \alpha r \tag{24}
$$

For $k \notin S$, the value of $q(k)$ is not important as long as $||q||_{\infty} \leq r$. This is because by assumption, the relaxed Lipschitz conditions still holds no matter how $q(S)$ is extended to the entire landmark set.

Fig. [2](#page-4-0) shows the relationship for different quantities involved in the proof. Consider the patch $I_n(R)$, using Eqn. [20](#page-3-4) and we have:

$$
|I_p(R) - I_q(R)| \le Ar \tag{25}
$$

Thus we have for the input image I:

$$
||I(R) - I_q(R)|| \le ||I(R) - I_p(R)|| + ||I_p(R) - I_q(R)|| \le (A + \eta)r
$$
\n(26)

On the other hand, since $I_{nn}(R)$ is the Nearest Neighbor image to I, its distance to I can only be smaller:

$$
||I(R) - I_{nn}(R)|| \le ||I(R) - I_{q}(R)|| \le (A + \eta)r
$$
\n(27)

Thus we have:

$$
|I_p(R) - I_{nn}(R)| \le |I_p(R) - I(R)| + |I(R) - I_{nn}(R)| \le (A + 2\eta)r
$$
\n(28)

Now we want to prove $||p(S) - q_{nn}(S)|| \le \gamma r$. If not, then from Eqn. [28](#page-4-1) we have:

$$
|I_p(R) - I_{nn}(R)| \ge \Gamma r > (A + 2\eta)r \tag{29}
$$

which from Eqn. [21](#page-3-4) is a contradiction. Thus we have

$$
||p(S) - q_{nn}(S)||_{\infty} \le \gamma r \tag{30}
$$

Thus, just setting the prediction $\hat{p}(S) = q_{nn}(S)$ suffices. П

Theorem 4 (Verification of Aggregation Step.) Supose we have estimations $\hat{p}(S_i)$ for overlapping S_j of the same layer covering the same landmark i (i.e., $i \in S_j$) so that the following condition holds:

$$
\|\hat{p}(S_j) - p(S_j)\|_{\infty} \le r \quad \forall j \tag{31}
$$

Then the joint prediction

$$
\tilde{p}(i) = \text{mean}_{\{j : i \in S_j\}} \hat{p}_{j \to i}(S_j)
$$
\n(32)

satisfies $||\hat{p}(i) - p(i)||_{\infty} \leq r$. As a result, $||\hat{p} - p||_{\infty} \leq r$.

Proof By the property of $\|\cdot\|_{\infty}$, we have for landmark *i*:

$$
\|\hat{p}_{j \to i}(S_j) - p(i)\|_{\infty} \le r \tag{33}
$$

Then we have

П

$$
\|\tilde{p}(i) - p(i)\| = \left\| \frac{1}{\#\{j : i \in S_j\}} \sum_{j : i \in S_j} \hat{p}_{j \to i}(S_j) - p(i) \right\| \le r
$$
\n(34)

2.4 Number of Samples Needed

Theorem 5 (The Number of Samples Needed) The total number N of samples needed is bounded by:

$$
N \le C_3 C_1^d + C_2 \log_{1/\bar{\gamma}} 1/\epsilon \tag{35}
$$

where $C_1 = 1/\min \alpha(x, r)$, $C_2 = 2^{1/(1-\bar{\gamma}^2)}$ and $C_3 = 2 + c_{SS}(\lceil \frac{1}{2} \log_{1/\bar{\gamma}} 2K/d \rceil + 1)$.

Proof We divide our analysis into two cases: $d = 2K$ and $d < 2K$, where K is the number of landmarks. $d > 2K$ is not possible. We index patch (x, r) with subscript j, i.e., for j-th patch, its Lipschitz constants are α_j , γ_j , A_j , Γ_j , etc. Besides, denote [t] as the subset of all patches that belong to the same layer t .

Case 1: $d = 2K$

First let us consider the case that the intrinsic dimensionality of deformation field d is just 2K. Then the root dimensionality $d_1 = 2K$ (twice the number of landmarks). By Assumption [2,](#page-2-5) the dimensionality d_t for layer t is:

$$
d_t = \beta r_t^2 = \frac{d_1}{r_1^2} r_t^2 = \bar{\gamma}^{2t-2} d_1 \tag{36}
$$

Any patch $j \in [t]$ has the same degrees of freedom since by Assumption [2,](#page-2-5) d_i only depends on r_i , which is constant over layer t.

For any patch $j \in [t]$, we use at most N_j training samples:

$$
N_j \le \left(\frac{1}{\alpha_j}\right)^{d_t} \tag{37}
$$

to ensure the contracting factor is indeed at least $\gamma_j \leq \overline{\gamma}$. Note for patch j, we only need the content within the region R_{j0} as the training samples. Therefore, training samples of different patches in this layer can be stitched together, yielding samples that cover the entire image. For this reason, the number N_t of training samples required for the layer t is:

$$
N_t \le \arg\max_{j \in [t]} N_j \le C_1^{d_t} = C_1^{\bar{\gamma}^{2t-2} d_1} \tag{38}
$$

for $C_1 = 1/\min_j \alpha_j$. Denote $n_t = C_1^{\bar{\gamma}^{2t-2}d_1}$. Then we have:

$$
N \le \sum_{t=1}^{T} N_t \le \sum_{t=1}^{T} n_t
$$
\n(39)

To bound this, just cut the summation into half. Given $l > 1$, set T_0 so that

$$
\frac{n_{T_0}}{n_{T_0+1}} = n_{T_0}^{1-\bar{\gamma}^2} \ge l, \quad \frac{n_{T_0+1}}{n_{T_0+2}} = n_{T_0+1}^{1-\bar{\gamma}^2} \le l
$$
\n
$$
(40)
$$

Thus we have

$$
\sum_{t=1}^{T} n_t = \sum_{t=1}^{T_0} n_t + \sum_{t=T_0+1}^{T} n_t
$$
\n(41)

The first summation is bounded by a geometric series. Thus we have

$$
\sum_{t=1}^{T_0} n_t \le C_1^{d_1} \sum_{t=1}^{T_0} \left(\frac{1}{l}\right)^{t-1} \le \frac{C_1^{d_1}}{1 - 1/l} = \frac{l}{l-1} C_1^{d_1} \tag{42}
$$

On the other hand, each item of the second summation is less than $l^{1/(1-\bar{\gamma}^2)}$. Thus we have:

$$
\sum_{t=T_0+1}^{T} n_t \le l^{1/(1-\bar{\gamma}^2)} T \tag{43}
$$

Figure 3: Sampling strategies for Thm. [7](#page-7-2) and Thm. [9.](#page-8-0) (a) Uniform sampling within a hypercube $[-r, r]^D$ so that for any $\mathbf{p} \in [-r, r]^D$, there exists at least one training sample that is αr close to **p.** (b) If we know that in addition to the constraint $\|\mathbf{p}\|_{\infty} \leq r$, **p** always lies on a subspace of dimension $d < D$, then just assigning samples near the subspace within the hypercube suffices.

Combining the two, we then have:

$$
N \le \frac{l}{l-1} C_1^{d_1} + l^{\frac{1}{1-\gamma^2}} T \tag{44}
$$

for $T = \lceil \log_{1/\overline{2}} 1/\epsilon \rceil$. Note this bound holds for any l, e.g. 2. In this case, we have

$$
N \le 2C_1^{d_1} + C_2T \tag{45}
$$

for $C_2 = 2^{\frac{1}{1-\bar{\gamma}^2}}$.

Case 2: $d < 2K$

In this case, setting $d_1 = 2K$, finding T_1 so that $d_{T_1} \geq d$ but $d_{T_1+1} < d$ in Eqn. [36,](#page-5-1) yielding:

$$
T_1 = \left\lceil \frac{1}{2} \log_{1/\bar{\gamma}} 2K/d \right\rceil + 1 \tag{46}
$$

Then, by Assumption [2,](#page-2-5) from layer 1 to layer T_1 , their dimensionality is at most d. For any layer between 1 and T_1 , N_t is bounded by a constant number:

$$
N_t \le c_{SS} C_1^d \tag{47}
$$

The analysis of the layers from T_1 to T follow case 1, except that we have d as the starting dimension rather than $2K$. Thus, from Eqn. [45,](#page-6-1) the total number of samples needed is:

$$
N \le (T_1 c_{SS} + 2)C_1^d + C_2 T \tag{48}
$$

3 Sampling within a Hypercube

Theorem [3](#page-3-5) is based on a design of sampling strategy so that for every location p in the hypercube $[-r, r]^D$, there exists at least one sample sufficiently close to it. Furthermore, we want to minimize the number of samples needed for this design. Mathematically, we want to find the smallest *cover* of $[-r, r]^D$.

In the following, we provide one necessary and two sufficient conditions. The first is for the general case (covering $[-r, r]^D$ entirely), while the second specifies the number of samples needed if p is known to be on a low-dimensional subspace, in which we could have better bounds.

3.1 Covering the Entire Hypercube

Theorem 6 (Sampling Theorem, Necessary Conditions) To cover $[-r, r]^D$ with smaller hypercubes of side $2\alpha r$ ($\alpha < 1$), at least $\lfloor 1/\alpha^D \rfloor$ hypercubes are needed.

Proof The volume of $[-r, r]^D$ is $Vol(r) = (2r)^D$, while the volume of each hypercube of side $2\alpha r$ is Vol $(2\alpha r) = (2r)^D \alpha^D$. A necessary condition of covering is the total volume of small hypercube has to be at least larger than $Vol(r)$:

$$
N \text{Vol}(2\alpha r) \ge \text{Vol}(r) \tag{49}
$$

which gives:

$$
N \ge \frac{\text{Vol}(r)}{\text{Vol}(2\alpha r)} = \frac{1}{\alpha^D} \ge \left\lfloor \frac{1}{\alpha^D} \right\rfloor \tag{50}
$$

П

Theorem 7 (Sampling Theorem, Sufficient Conditions) With $[1/\alpha]^D$ number of samples $(\alpha < 1)$, for any **p** contained in the hypercube $[-r, r]^D$, there exists at least one sample $\hat{\mathbf{p}}$ so that $||\hat{\mathbf{p}} - \mathbf{p}||_{\infty} \leq \alpha r.$

Proof Uniformly distribute the training samples within the hypercube does the job. In particular, denote

$$
n = \left\lceil \frac{1}{\alpha} \right\rceil \tag{51}
$$

Thus we have $1/n = 1/[1/\alpha] \le 1/(1/\alpha) = \alpha$. We put training sample of index (i_1, i_2, \ldots, i_d) on d-dimensional coordinates:

$$
\hat{\mathbf{p}}_{i_1, i_2, \dots, i_d} = r \left[-1 + \frac{2i_1 - 1}{n}, -1 + \frac{2i_2 - 1}{n}, \dots, -1 + \frac{2i_D - 1}{n} \right]
$$
\n
$$
(52)
$$

does the job. Here $1 \le i_k \le n$ for $k = 1 \dots D$. So each dimension we have n training samples. Along the dimension, the first sample is r/n distance away from $-r$, then the second sample is $2r/n$ distance to the first sample, until the last sample that is r/n distance away from the boundary r. Then for any $\mathbf{p} \in [-r, r]^D$, there exists i_k so that

$$
\left| \mathbf{p}(k) - r \left(-1 + \frac{2i_k - 1}{n} \right) \right| \le \frac{1}{n} r \le \alpha r \tag{53}
$$

This holds for $1 \leq k \leq D$. As a result, we have

$$
\|\mathbf{p} - \hat{\mathbf{p}}_{i_1, i_2, \dots, i_D}\|_{\infty} \le \alpha r \tag{54}
$$

and the total number of samples needed is $n^D = \left[1/\alpha\right]^D$.

3.2 Covering a Subspace within Hypercube

Now we consider the case that \bf{p} lies on a subspace of dimension d, i.e., there exists a columnindependent matrix U of size D-by-d so that $p = Uh$ for some hidden variable h. This happens if we use overcomplete local bases to represent the deformation. Since each landmark is related to two local bases, usually $D/2$ number of landmarks will give the deformation parameters **p** with apparent dimension D.

In this case, we do not need to fill the entire hypercube $[-r, r]^D$. In fact, we expect the number of samples to be exponential with respect to only d rather than D .

Definition 8 (Noise Controlled Deformation Field) A deformation field \mathbf{p} is called noisecontrolled deformation of order k and expanding factor c, if for every $\mathbf{p} \in [-r, r]^D$, there exists a k-dimensional vector $(k \geq d)$ $\mathbf{v} \in [-r, -r]^k$ so that $\mathbf{p} = f(\mathbf{v})$. Furthermore, for any $\mathbf{v}_1, \mathbf{v}_2 \in$ $[-r, r]^k$, we have:

$$
\|\mathbf{p}_1 - \mathbf{p}_2\|_{\infty} = \|f(\mathbf{v}_1) - f(\mathbf{v}_2)\|_{\infty} \le c \|\mathbf{v}_1 - \mathbf{v}_2\|_{\infty}
$$
\n(55)

for a constant $c \geq 1$.

Note that by the definition of intrinsic dimensionality d, \bf{v} could be only d-dimensional and still $\mathbf{p} = f(\mathbf{v})$. However, in this case, c could be pretty large. In order to make c smaller, we can have a *redundant* k-dimensional representation **h** with $k > d$.

Many global deformation field satisfies Definition [8.](#page-7-3) Here we consider two cases, the affine deformation and the transformation that contains only translation and rotation.

Affine transformation. An affine deformation field **p** defined on a grid has $d = 6$ and $k = 8$, no matter how many landmarks $(D/2)$ there are. This is because each component of p can be written as

$$
\mathbf{p}(k) = [\lambda_1 x_k + \lambda_2 y_k + \lambda_3, \lambda_4 x_k + \lambda_5 y_k + \lambda_6]
$$
\n⁽⁵⁶⁾

for location $\mathbf{l}_k = (x_k, y_k)$. Therefore, since any landmarks \mathbf{l}_k within a rectangle can be linearly represented by the locations of four corners in a convex manner, the deformation vector $p(k)$ on \mathbf{l}_k can also be linearly represented by the deformation vectors of four corners (8 DoF):

$$
\mathbf{p}(k) = A_k \mathbf{v} = \sum_{j=1}^{4} a_{kj} \mathbf{v}(j)
$$
\n(57)

 $\sum_j a_{kj} = 1$. For any $\mathbf{p} \in [-r, r]^D$, **v** can be found by just picking the deformation of its four with **v** is the concatenation of four deformation vectors from the four corners, $0 \le a_{kj} \le 1$ and corners, and thus $\|\mathbf{v}\|_{\infty} \leq r$. Furthermore, we have for $\mathbf{v}_1, \mathbf{v}_2 \in [-r, r]^k$:

$$
\|\mathbf{p}_1 - \mathbf{p}_2\|_{\infty} = \|f(\mathbf{v}_1) - f(\mathbf{v}_2)\|_{\infty} \le \max_{k} \sum_{j=1}^{4} a_{kj} \|\mathbf{v}_1(j) - \mathbf{v}_2(j)\| \le \|\mathbf{v}_1 - \mathbf{v}_2\|_{\infty}
$$
(58)

Therefore, $c = 1$.

Transformation that contains only translation and rotation. Similarly, for deformation that contains pure translation and rotation $(d = 3)$, we just pick displacement vectors on two points $(k = 4)$, the rotation center and the corner as **v**. Then we have:

$$
\mathbf{p}(r,\theta) = \mathbf{p}_{\text{center}} + \frac{r}{r_{\text{corner}}} R(\theta) (\mathbf{p}_{\text{corner}} - \mathbf{p}_{\text{center}})
$$
(59)

$$
= (I - \frac{r}{r_{\text{corner}}}R(\theta))\mathbf{p}_{\text{center}} + \frac{r}{r_{\text{corner}}}R(\theta)\mathbf{p}_{\text{corner}}
$$
(60)

where I is the identity matrix, $R(\theta)$ is the 2D rotational matrix and r_{corner} is the distance from the center location to the corner. Here we reparameterize the landmarks with polar coordinates (r, θ) . Therefore, for two different \mathbf{v}_1 and \mathbf{v}_2 , since $r \leq r_{\text{corner}}$, we have:

$$
\|\mathbf{p}_1(r,\theta) - \mathbf{p}_2(r,\theta)\|_{\infty} \leq \left\| (I - \frac{r}{r_{\text{corner}}}R(\theta))(\mathbf{p}_{\text{center},1} - \mathbf{p}_{\text{center},2}) \right\|_{\infty}
$$
(61)

$$
+ \left\| \frac{r}{r_{\text{corner}}} R(\theta) (\mathbf{p}_{\text{corner},1} - \mathbf{p}_{\text{corner},2}) \right\|_{\infty} \tag{62}
$$

$$
\leq 2\|\mathbf{p}_{\text{center},1} - \mathbf{p}_{\text{center},2}\|_{\infty} + \sqrt{2}\|\mathbf{p}_{\text{corner},1} - \mathbf{p}_{\text{corner},2}\|_{\infty} \quad (63)
$$

$$
\leq (2+\sqrt{2})\|\mathbf{v}_1-\mathbf{v}_2\|_{\infty} \tag{64}
$$

since $|\cos(\theta)| + |\sin(\theta)| \leq \sqrt{2}$. Therefore,

$$
\|\mathbf{p}_1 - \mathbf{p}_2\|_{\infty} = \max_{r,\theta} \|\mathbf{p}_1(r,\theta) - \mathbf{p}_2(r,\theta)\|_{\infty} \le (2 + \sqrt{2})\|\mathbf{v}_1 - \mathbf{v}_2\|_{\infty}
$$
(65)

So $c = 2 + \sqrt{2} \leq 3.5$.

Given this definition, we thus have the following sampling theorem for deformation parameters p lying on a subspace that is noise-controlled.

Theorem 9 (Sampling Theorem, Sufficient Condition for Subspace Case) For any noisecontrolled deformation field $\mathbf{p} = f(\mathbf{v})$ with order k and expanding factor c, with $c_{SS} \lceil 1/\alpha \rceil^d$ number of training samples distributed in the hypercube $[-r, r]^D$, there exists at least one sample $\hat{\mathbf{p}}$ so that $\|\hat{\mathbf{p}} - \mathbf{p}\|_{\infty} \leq \alpha r$. Note $c_{SS} = [c]^k \left[\frac{1}{\alpha}\right]^{k-d}$.

Proof We first apply Thm. [7](#page-7-2) to the hypercube $[-r, r]^k$. Then with $\lceil \frac{c}{\alpha} \rceil^k$ samples, for any $\mathbf{v} \in [-r, r]^k$, there exists a training sample \mathbf{v}^i so that

$$
\|\mathbf{v} - \mathbf{v}^i\|_{\infty} \le \frac{\alpha r}{c} \tag{66}
$$

We then build the training samples $\{p^i\}$ by setting $p^i = f(v^i)$. Therefore, from the definition of noise cancelling, given any $\mathbf{p} \in [-r, r]^D$, there exists an $\mathbf{v} \in [-r, r]^k$ so that $\mathbf{p} = f(\mathbf{v})$. By the sampling procedure, there exists \mathbf{v}^i so that $\|\mathbf{v} - \mathbf{v}^i\|_{\infty} \leq \frac{\alpha}{c}r$, and therefore:

$$
\|\mathbf{p} - \mathbf{p}^i\|_{\infty} \le c \|\mathbf{v} - \mathbf{v}^i\|_{\infty} \le \alpha r \tag{67}
$$

setting $\hat{\mathbf{p}} = \mathbf{p}^i$ thus does the job. Finally, note that

$$
\left\lceil \frac{c}{\alpha} \right\rceil^k \le \lceil c \rceil^k \left\lceil \frac{1}{\alpha} \right\rceil^{k-d} \left\lceil \frac{1}{\alpha} \right\rceil^d \tag{68}
$$

П

So setting $c_{SS} = \lceil c \rceil^k \left\lceil \frac{1}{\alpha} \right\rceil^{k-d}$ suffices (since $\lceil ab \rceil \leq \lceil a \rceil \lceil b \rceil$).

4 Finding optimal curve $\gamma = \gamma(\alpha)$

Without loss of generality, we set $r = 1$. Then, we rephrase the algorithm in Alg. [1.](#page-9-1)

Algorithm 1 Find Local Lipschitz Constants

1: **INPUT** Parameter distances $\{\Delta p_m\}$ with $\Delta p_m \leq \Delta p_{m+1}$. 2: **INPUT** Image distances $\{\Delta I_m\}$. 3: **INPUT** Scale r and noise η . 4: $\Delta I_m^+ = \max_{1 \leq l \leq m} \Delta I_l$, for $i = 1 \dots M$. 5: $\Delta I_m^- = \min_{i \leq l \leq M} \Delta I_l$, for $i = 1 \dots M$. 6: for $m = 1$ to M do 7: Find minimal $l^* = l^*(m)$ so that $\Delta I_{l^*}^- > \Delta I_m^+ + 2\eta$. 8: if $m \leq l^*$ then 9: Store the 4-tuples $(\alpha, \gamma, A, \Gamma) = (\Delta \mathbf{p}_m, \Delta \mathbf{p}_{l^*}, \Delta I_m^+, \Delta I_{l^*}^-)/r$. 10: end if 11: end for

To analyze Alg. [1,](#page-9-1) we make the following definitions:

Definition 10 (Allowable set of A and Γ) Given α , define the allowable set $\tilde{A}(\alpha)$ as:

$$
\tilde{A}(\alpha) = \{ A : \forall m \; \Delta \mathbf{p}_m \le \alpha \implies \Delta I_m \le A \}
$$
\n(69)

Naturally we have $\tilde{A}(\alpha') \subset \tilde{A}(\alpha)$ for $\alpha' > \alpha$. Similarly, given γ , define the allowable set $\tilde{\Gamma}(\gamma)$ as:

$$
\tilde{\Gamma}(\gamma) = \{ \Gamma : \forall m \; \Delta \mathbf{p}_m \ge \gamma \implies \Delta I_m \ge \Gamma \}
$$
\n(70)

and $\tilde{\Gamma}(\gamma') \subset \tilde{\Gamma}(\gamma)$ for $\gamma' < \gamma$.

Lemma [1](#page-9-1)1 (Properties of ΔI^+ and ΔI^-) The two arrays constructed in Alg. 1 satisfy:

$$
\Delta I_m^+ = \min \tilde{A}(\Delta \mathbf{p}_m) \tag{71}
$$

$$
\Delta I_m^- = \max \tilde{\Gamma}(\Delta \mathbf{p}_m) \tag{72}
$$

Moreover, ΔI_m^+ is ascending while ΔI_m^- is descending with respect to $1 \le m \le M$.

Proof (a): First we show $\Delta I_m^+ \in \tilde{A}(\Delta \mathbf{p}_m)$. Since the list $\{\Delta \mathbf{p}_m\}$ was ordered, for any $\Delta \mathbf{p}_l \leq$ $\Delta \mathbf{p}_m$, we have $l \leq m$. By definition of ΔI_m^+ , we have $\Delta I_l \leq \Delta I_m^+$. Thus $\Delta I_m^+ \in \tilde{A}(\Delta \mathbf{p}_m)$.

(b): Then we show for any $A \in \tilde{A}(\Delta \mathbf{p}_m)$, $\Delta I_m^+ \leq A$. For any $1 \leq l \leq m$, since $\Delta \mathbf{p}_l \leq \Delta \mathbf{p}_m$, by the definition of A, we have $\Delta I_l \leq A$, and thus $\Delta I_m^+ = \max_{1 \leq l \leq m} \Delta I_l \leq A$.

Therefore, $\Delta I_m^+ = \min \tilde{A}(\Delta \mathbf{p}_m)$. Similarly we can prove $\Delta I_m^- = \max \tilde{\Gamma}(\Delta \mathbf{p}_m)$.

Theorem [1](#page-9-1)2 For each $\alpha = \Delta p_m$, Algorithm 1 without the check $\alpha \leq \gamma$ always gives the globally optimal solution to the following linear programming:

min γ (73)

$$
\text{s.t.} \quad \Delta I_m \le A \quad \forall \Delta \mathbf{p}_m \le \alpha \quad (or \ \ A \in \tilde{A}(\alpha)) \tag{74}
$$

$$
\Delta I_m \ge \Gamma \quad \forall \Delta \mathbf{p}_m \ge \gamma \quad (or \ \Gamma \in \tilde{\Gamma}(\gamma)) \tag{75}
$$

$$
A + 2\eta < \Gamma \tag{76}
$$

which has at least one feasible solution $(A \to +\infty, \gamma \to -\infty, \Gamma \to -\infty)$ for any α .

Proof Since there are M data points, we can discretize the values of α and γ into M possible values without changing the property of solution.

(a) First we prove every solution given by Alg. [1](#page-9-1) (without the final check) is a feasible solution to the optimization (Eqn. [73\)](#page-10-2). Indeed, for any $\alpha = \Delta p_m$, according to Lemma [11,](#page-9-2) $A = \Delta I_m^+ \in \tilde{A}(\alpha)$, $\gamma = \Delta \mathbf{p}_{l^*}$, and $\Gamma = \Delta I_{l^*}^- \in \tilde{\Gamma}(\gamma)$ and thus Eqn. [74](#page-10-2) and Eqn. [75](#page-10-2) are satisfied. From the construction of Alg. [1,](#page-9-1) $A + 2\eta < \Gamma$. Thus, the Algorithm [1](#page-9-1) gives a feasible solution to Eqn. [73.](#page-10-2)

(b) Then we prove Alg. [1](#page-9-1) (without the final check) gives the optimal solution. If there exists $l' < l^*$ so that $\gamma' = \Delta \mathbf{p}_{l'} < \Delta \mathbf{p}_{l^*} = \gamma$ is part of a better solution $(\alpha, \gamma', A', \Gamma')$, then $\tilde{\Gamma}(\gamma') \subset \tilde{\Gamma}(\gamma)$. This means

$$
A' + 2\eta < \Gamma' \le \Delta I_{l'}^- = \max \tilde{\Gamma}(\gamma') \le \max \tilde{\Gamma}(\gamma) = \Delta I_{l^*}^- \tag{77}
$$

On the other hand, $A = \Delta I_m^+ = \min \tilde{A}(\alpha) \le A' \in \tilde{A}(\alpha)$. Then, there are two cases:

- $\Delta I_m^+ + 2η < \Delta I_{l'}^- < \Delta I_{l^*}^-$. This is not possible since the algorithm already find the minimal l ∗ .
- $\Delta I_m^+ + 2\eta < \Delta I_{l'}^- = \Delta I_{l^*}^-$. Then according to the algorithm, $l' = l^*$.

which is a contradiction.

From Theorem [12,](#page-10-3) it is thus easy to check that the complete Algorithm [1](#page-9-1) (with the check $\alpha \leq \gamma$) gives the optimal pair (α, γ) that satisfies the Relaxed Lipschitz Conditions (Eqn. [20](#page-3-4) and Eqn. [21\)](#page-3-4).

5 More Experiments

Fig. [4](#page-11-0) shows the behaviors of our algorithm over different iterations. We can see with more and more stages, the estimation captures more detailed structures and becomes better.

Fig. [5](#page-12-0) shows how the performance degrades if only the bottom K layers are used for prediction. We can see that each layer plays a different rule. Layer 3-4 seems to be critical for the synthetic data since they have captured the major mode/scale of deformation.

References

[1] Y. Tian and S. G. Narasimhan. Globally optimal estimation of nonrigid image distortion. IJCV, 2012.

Figure 4: Landmark Estimation at different iterations given by our approach.

Test Image	With all layers	Use layer 3-7	Use layer 5-7	Use layer 6-7	Use layer 7
10.934074	2.555294	2.541940	8.269434	8.991640	10.235116
10.830096	2.577389	2.914108	8.719922	VVV 9.245572	' T if a 10.089482
12.664164	3.802439	7.211531	9.829800	11.809833	12.291305
8.968721	2.133142	2.024983	4.857615	штин 6.928122	I WA MT 8.172354
9.700289 8.418094	2.587239 LT1 2.065650	$3.\overline{420518}$ 7711 2.121358	7.040868 TT Li 4.756471	8.798978 UV 2 TITL 6.454676	9.206888 THE REAL 7.737799
11.256226	3.858836	VТ 5.117804	шт 8.623931	k in Fran 9.622261	M M M 10.743973
10.509438	Ø. 3.392445	蛩 3.120066	E÷ 8.966320	性 9.366427	10.004485

Figure 5: Landmark Estimation using only last L layers of the hierarchy. Layer 3-4 is critical for getting a good estimation of the landmarks on the synthetic data.