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Abstract. Human pose estimation requires a versatile yet well-constrained
spatial model for grouping locally ambiguous parts together to pro-
duce a globally consistent hypothesis. Previous works either use local
deformable models deviating from a certain template, or use a global
mixture representation in the pose space. In this paper, we propose a
new hierarchical spatial model that can capture an exponential number
of poses with a compact mixture representation on each part. Using la-
tent nodes, it can represent high-order spatial relationship among parts
with exact inference. Different from recent hierarchical models that asso-
ciate each latent node to a mixture of appearance templates (like HoG),
we use the hierarchical structure as a pure spatial prior avoiding the large
and often confounding appearance space. We verify the effectiveness of
this model in three ways. First, samples representing human-like poses
can be drawn from our model, showing its ability to capture high-order
dependencies of parts. Second, our model achieves accurate reconstruc-
tion of unseen poses compared to a nearest neighbor pose representation.
Finally, our model achieves state-of-art performance on three challenging
datasets, and substantially outperforms recent hierarchical models.

1 Introduction

Human pose estimation is a challenging task in computer vision with numerous
practical applications. For a scenario using a single image, the goal is to esti-
mate the location of each human part. To avoid the curse of dimensionality, one
popular approach is to build individual detectors for each human part. Spatial
reasoning between parts is then utilized to filter the often noisy responses of the
individual detectors. It is critical to design the spatial model so that it captures
a versatile yet plausible set of poses.

The influential work of Felzenszwalb et al. [5] uses pictorial structures (PS)
[7] to efficiently capture the pairwise spatial relationships between nearby parts.
The resulting structure forms a tree allowing for efficient inference. A disadvan-
tage of [5] is that it only allows for small deformations from a fixed template. To
solve this problem, [8] used a (global) mixture of pictorial structures to capture
greater variations in pose. However, since the number of plausible human poses
is exponential, the number of parameters that need to be estimated is prohibitive
without a large dataset or part sharing mechanism.
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Recently, [17] treats each part rather than the entire body as a mixture
of templates while modeling their pairwise relationships. As a result, it offers
a compact way to represent exponentially many poses with shared parameters.
Unfortunately, their use of pairwise relationships fails to capture the complex
characteristics of pose space. Other works [16, 2, 14] model the high-order rela-
tionship among parts with high-order cliques. However, they either use approxi-
mate inference or heuristic search with worse-case exponential time complexity.

As first proposed by David Marr [11], one way to introduce high-order rela-
tionships without losing the benefit of efficient tree-based inference is to build
a hierarchical structure with latent nodes. In this paper, we incorporate both
the hierarchical structure with latent nodes and part mixtures from [17]. This
enables us to model both the high-order spatial relationship among parts, and
to capture an exponential number of plausible poses.

We train the hierarchical model shown in Fig. 1 with a max-margin frame-
work and explore the obtained model in two ways: the visual quality of pose
samples and the reconstruction error of recovered poses from labeled testing
datasets. As far as we know, we make the first attempt to explore the pose space
specified by the trained model, and conduct a more thorough analysis compared
to previous work [1] that only shows a few pose samples. For model exploration,
first, we sample the pose mixture (type) from the learned model and reconstruct
the poses to judge their realism. Compared to the samples from pairwise tree
models [17], our samples appear more human-like and natural. This demonstrates
the capability of our model at capturing global and high-order relationships of
poses rather than just local information. In addition, our model is able to build a
smooth pose trajectory between two pre-defined poses, showing its potential for
human motion synthesis. Second, the reconstruction error of a given pose using
our method is lower than nearest neighbor, the lower error bound for methods
that model pose space as a mixture. This shows that our method captures a
large variation of poses compactly and generalizes well.

Many recent works [16, 13] also use hierarchical models for pose estimation.
In particular, [13] propose part types that can be shared among different con-
figurations. In their settings, each mixture component of a latent node also cor-
responds to one HoG template, modeling the image appearance covered by the
descendants of that node. While their main focus is detection, we argue that
this is not the ideal strategy for pose estimation, since appearance could vary
exponentially with respect to the number of parts, especially for a latent top
node (e.g. root node) and cannot be captured by a few mixtures. In our model,
only the leaf nodes receive image evidence. The latent nodes handle only ge-
ometric deformation and compatibility between parent/child types. Therefore,
the number of poses that our model can capture is not the number of mixtures
of the root node, but instead the product of mixtures of all nodes.

In terms of numerical evaluation, the performance of our model is on par
with the state-of-art on three benchmark datasets (PARSE [12], Leeds Sports
Dataset [8] and UIUC people [15]). Besides, we also show substantial improve-
ment (∼ 45%) over recent work [16] that builds a hierarchical loopy model.
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Fig. 1. (a) The hierarchical model for human pose estimation. All nodes with dashed
boundaries are latent variables that are on top of body parts (leaves). (b) The latent
tree model. For any part j, we want to estimate its location pj = (xj , yj) in the
image, and its type zj . Each type of the object specifies a certain configuration and
appearance of that object, as shown in Fig. 2(a). (c) The 6 latent and 26 leaf nodes in
our three-layered hierarchy.

2 Related Work

While several works [4, 1] focus on designing better part detectors, in this work,
we focus solely on the spatial relationships between parts obtained using the
standard HoG features. Following the work of Felzenszwalb et al. [5], there have
been many extensions. An iterative approach was taken in [12] to capture high-
order color information of the human body to the model. Poselets [3] model
strongly correlated apearance across nearby parts, and uses a discriminative
Hough voting to localize the object. A hierarchical loopy model with poselets
is built in [16]. Going further, a complete graph for part spatial relationship
is proposed in [2]. To model poses with large variations, [8] builds a cluster
of pictorial structures, with each cluster component responsible for a particular
pose. Similarly, [18] uses a set of hierarchical models for each object view for
better objection detection. Recently, [17] regarded each part as a mixture of
templates and models the pairwise spatial relationship between mixtures on a
tree structure. This encodes exponentially many poses with a few mixtures at
each node. In this work, we build a hierarchical tree model with a mixture built
on both leaves and intermediate (latent) parts. This allows us to handle both
large variation of poses, model high-order relations among parts, and performs
efficient inference. Our work differs from [18] whose hidden nodes of hierarchy
do not have a mixture and also differs from [16] which contains loops and where
each latent part is also associated with the appearance of the image.

Computational efficiency plays a critical role in designing the pictorial struc-
ture. A tree model [5, 8, 17] yields fast and exact inference, but it may not be able
to encode sufficient constraints to avoid problems such as double-counting arms
and legs. High-order models can be solved only with approximate inference [16]
or Branch-and-Bound search [14] with no guarantee on the quality of solution
or the time complexity. To model high-order interaction with tractable compu-
tational time, recently [10] proposes to use one (global) latent node to model a
mixture of different poses. Following this thought, our work can be regarded as
an extension that uses a hierarchy of latent nodes.
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3 The Hierarchical Model

3.1 Overview

We use a hierarchical tree to represent the articulation of human pose, as shown
in Fig. 1. In this hierarchy, there are two sets of nodes, the leaf nodes (with
solid outlines) and the latent nodes (with dashed outlines). Each leaf node is the
primitive body part (i.e., lower arm, upper arm, palm) that has been manually
labeled. Each latent node covers a subset of primitive parts that are spatially

nearby (i.e. left arm is a latent node that covers lower and upper arms and palm).
Finally, the root node represents the entire human body. All nodes follow a tree
structure and standard dynamic programming leads to efficient inference.

Different from many previous works [1, 5] and similar to [17], each node Vj

has a type variable zj in addition to the location variable pj = (xj , yj). Here
(xj , yj) is the center location of each part and zj is a discrete variable that
represents the mixture nature of each node.

For a leaf node such as the palm, its type variable zj means the appearance
of that node could be different, i.e., open/close palm, vertical/horizontal arm
(Fig. 2(a)). We use a discrete type variable rather than a continuous transfor-
mation of a simple template (e.g. rotation/scaling transformation as in [1]), since
these transformations usually cannot capture complicated appearance changes,
and it is not always necessary to enumerate all rotation/scales that are rare in
both training and test sets.

For a latent node like arm, its type variable zj means that both the spatial

configuration and the preferred types of its children could be different for differ-
ent hidden state specified by zj (Fig. 2(b)). Furthermore, for each type zj of the
parent, one could specify how often each child type zk appears using the compa-

bility term θc
jk(zj , zk). As we will show in Section 3.2, this modeling offers two

benefits, (a) enabling sharing of child apperance models and (b) introducing
high-order relationships among nearby parts.

3.2 Compatibility between Parent and Child Nodes

Appearance Sharing: In our model, appearance can be shared among different
latent node (parent) types. For example, templates of open/close hand can be
shared in both upright and side-way straight arms. Furthermore, our model can
specify what kind of sharing is allowed and what is prohibited (e.g. upright
arm cannot have a horizontal lower arm). Such information is encoded in the
compability term θc

jk(zj , zk), which is a function between parent type zj and
child type zk.

Several illustrative examples are shown in Fig. 2. Our model may represent
the constraint “an upright arm cannot contain a horizontal lower arm” by setting
θc

jk(zj = upright, zk = horizontal lower arm) = −∞, meaning the child and
the parent states are incompatible. Similarly, our model may represent “the
hand of an upright arm could be open or closed, facing the camera or not”, by
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Fig. 2. (a) The model of hand and arm segments and their associated types. (b)
An illustration of six potential latent configurations (types) of an arm. Note that for
different type of arms, the relative locations of the child nodes are different, while the
appearance model of upper/lower arms and palms can be shared.

setting θc
jk(zj = upright, zk = open hand) = θc

jk(zj = upright, zk = close hand),
meaning they are equally probable.

On the other hand, appearance sharing in [17] is more restricted. In their
model, an open palm pointing up in an upright arm cannot be shared with an
open palm in a side-way straight arm (Fig. 2(b), type I vs. type IV). This is
because by Eqn. 4 in [17], the predicted relative location of the lower arm is
determined by the type of palm. If these two open palms are shared (assigned
the same type), then the relative location of the lower arm is forced to be the
same, which is not the case in general.

Modeling high-order part relationships: With the compatibility term
θc

jk(zj , zk), one can also model high-order relationships between multiple chil-
dren. Indeed, by having a common latent parent with large number of mixtures,
it is possible to model any joint distribution of children’s types and locations.

3.3 Objective Function

We formulate the objective function for the hierarchical model (Fig. 1) as follows.
For convenience, we still use the parent part node Vj “arm” and its child node
Vk “palm” as an example.

Pairwise term. Part Vj has variables (pj , zj) and its child has variables
(pk, zk). The type zj can take a few discrete values, including “upright”, “bent”,
“straight” and so on. Given the type zj and the location pj of “arm”, we can
predict the location p̃k of its child Vk as:

p̃k = pj + δpjk(zj) (1)

Then, given a configuration (location and type) of Vj and Vk, we define the
following pairwise score θjk(Vj , Vk):

θjk(Vj , Vk) = θd
jk(p̃k,pk, zk) + θc

jk(zj , zk) (2)
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where, θc
jk(zj , zk) is the compatibility term as discussed in Section 3.2, and

θd
jk(p̃k,pk, zk) = −ak(zk)dist(p̃k,pk) (3)

is the deformation term that computes the negative distance between p̃k pre-
dicted using parent location and type, and the location pk of Vk. Here dist(·, ·)
is simply the squared Euclidean distance (or any distance that enables distance
transform), and ak(zk) is the type-specific weight to be learned.

Unary term. For each leaf Vk, denote φ(I,pk) as the HoG feature ex-
tracted from location pk of image I, then the unary term θk(Vk) is defined
as wk(zk)T φ(I,pk), the inner product betwen the feature and a type-dependent
mask. Note that wk is a function of zk, meaning that there is a different template
for a different type of the part.

Finally, the entire objective function to be maximized is the following:

J(V ) =
∑

j

∑

k∈ch(j)

θjk(Vj , Vk) +
∑

k∈leaves

θk(Vk) (4)

For an image I, we estimate the best location and type (pk, zk) for all parts.

Fig. 3. Different spatial configurations (type z) of each hidden node (head-neck, left
arm, left leg) in our hierarchical model learnt from Leed Sports dataset. The black
circle indicates the child parts of that hidden node.

4 Training and Inference

The tree structure of our three-layered hierarchy is shown in Fig. 1(c). Given
training images with groundtruth location pk for leaf node k, for each latent
part j (e.g. arm), we first pick one of its child’s location as its location pj (e.g.
shoulder). Then we concatenate the relative spatial configuration pk − pj of all
its children in a vector, cluster them into groups using k-mean, and estimate the
parent-child offsets δpjk(·) accordingly. Example clusters are shown in Fig. 3.
Similarly, we can also build a four-layered hierarchy by subdividing the set of
leaf nodes into 2 further subsets.

Given the parent-child offsets, we follow the standard max-margin paradigm
and use latent SVM to discriminatively and jointly train the hierarchical struc-
ture, for both the part detector and the weights for the hierarchical model. De-
note {Ii} as a set of training images, {yi} as labels indicating whether an image
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contains a human (yi = 1) or not (yi = −1). The formulation then follows:

min
w,ξi

1
2w

T w + C
∑

i ξi (5)

s.t. maxV i yiw
T Φ(Ii, V i) ≥ 1 − ξi

ξi ≥ 0, ak(·) ≥ 0,

where, w is the concatenation of the parameters wk(·), ak(·) and θc
jk(·, ·), and

Φ(Ii, V i) are the overall features extracted from training sample i at given part
locations and types specified by V i, including the HoG templates of leaf parts.
δpjk(·) is fixed during training. Note the weights ak(·) for the distance have to
be non-negative, which can be easily enforced in the primal-dual optimization
procedure as borrowed from [17].

For latent SVM, initialization is important to achieve good performance.
Following the implementation of [17], firstly the HoG weights for each part are
independently trained given the labeled locations of each part, and concatenated
as the initialization of w. Compatibility weights θc

jk(·, ·) are set to uniform and
deformation weights ak(·) are set to 0.01. Then, Eqn. 5 is optimized. For all our
experiments, we set the regularization constant C = 0.02. Like [17], we use 1218
images without human in INRIA Person dataset as negative samples. See our
project website for more information.

Since the entire hierarchical model is a tree structure, exact inference follows
with the standard message passing algorithm. For node Vj , the incoming message
mk→j(pj , zj) and the outgoing message mj(pj , zj) are computed as:

mj(pj , zj) =
∑

k∈ch(j)

mk→j(pj , zj) (6)

mk→j(pj , zj) = max
zk

[

max
pk

mk(pk, zk) + θd
jk(p̃k(zj),pk, zk)

]

+ θc
jk(zj , zk) (7)

where, θd
jk(p̃k(zj),pk, zk) = −ak(zk)dist(p̃k,pk) (p̃k(zj) defined in Eqn. 1).

Note that if the parameter ak(zk) is only dependent on zk, the message mdt
k (·, zk)

can be shared during inference among different zj after applying the distance
transform making the inference procedure much faster,

mdt
k (·, zk) = max

pk

mk(pk, zk) − ak(zk)dist(·,pk). (8)

5 Experiments

Datasets: We use three benchmark datasets for evaluation: PARSE dataset [12],
Leeds Sports Dataset (LSP) [8] and UIUC people [15]. PARSE dataset contains
305 images with 100 for trainings and 205 for testing. Leeds Sports Dataset has
1000 training images and 1000 test images and show a large variation of pose
changes. UIUC people dataset contains 346 for training and 247 for testing.
Similar to previous works, we use the criterion proposed in [6] for performance
evaluation, i.e., a part is regarded as correctly identified if both its end-points
are within 50% of the labeled segment length from their true locations.
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5.1 Exploring the Hierarchical Model

We first study how well our hierarchical model, once trained on a dataset, can
represent the spatial configuration of the human body. For this, we (1) sam-
ple spatial configurations from the model and observe whether the samples are
human-like, and (2) reconstruct a given spatial configuration using the learned
model, and check the reconstruction error.

These two operations show complementary effects of a spatial model. A
weakly constrained spatial model, due to its flexibility, may perform extremely
well on the reconstruction task, but once sampled, may generate poses that are
not human-like. On the other hand, a model with strong spatial prior (e.g.,
tranditional pictorial structure [5]) will generate human-like poses with small
variations. But it may fail to reconstruct rare poses accurately. As we shall
show, our model achieves a balance between the two criteria.

Sampling. To sample the model, we omit the unary potentials (image ev-
idence) and the deformation score θd

jk(p̃k(zj),pk, zk), and only use the binary
potentials θc

jk(zj , zk) between parents and children. The truncated score function
becomes:

Jtrunc(Z) =
∑

j

∑

k∈ch(j)

θc
jk(zj , zk) (9)

where Z is the collection of all type variables of all nodes. Once samples of Z
are obtained, Eqn. 1 is used to deterministically generate the human poses in a
top-down manner.

To sample the type variables so that those with high score will be drawn
more often, we assign a probablistic distribution p(Z|T ) ∝ exp(J(Z)/T ), where
T is the temperature that controls how scattered the samples are. The case
T → +∞ wipes out the score variations in the pose space and outputs a uniform
distribution, while the case T → 0 samples only the best poses.

Since the hierarchical model follows a tree structure, exact sampling is pos-
sible. We start with all the leaf nodes and compute the marginal distribution of
their parents, all the way up to the root node. Then we sample the root node,
and then conditionally sample its children and grand children, until leaves are
sampled. We also sample conditionally given the type of an arbitrary node, by
treating the fixed node as the root.

For two different models, their temperatures T1 and T2 have to be calibrated
to show approximately the same variations in pose space. This is achieved by
finding a pair of T1 and T2 such that their pose variations, estimated by sampling,
are the same.

Fig. 6 shows that our model can generate reasonable human-like poses with
large variations. In comparison, sampling from [17] often results in weird-looking
poses, since they only model the local relationships between neighboring parts.
See supplementary material for a video of samples along a path in the pose-
space. In particular, fixing the root type and setting T → 0 gives the most
likely pose of that type, as shown in Fig. 4. This roughly corresponds to the
pose clusters the hierarchical model can capture. However, within each cluster,
significant variation is still allowed by changing the type variables below the root
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(a) PARSE (b) Leeds Sports (c) UIUC people

Fig. 4. The most probable poses of our model for given root types (roughly this corre-
sponds to a given cluster in the pose space). We can see it encodes very different poses.
In particular, Leeds Sports Dataset contain more pose changes than PARSE or UIUC
sports dataset.

(a) Fixed Right Leg

(b) Fixed Head

(c) Fixed Left Arm

Fig. 5. Pose sampling from the hierarchical model learned from Leeds Sports Dataset
with one latent node fixed. We can see our model is able to sample human-like poses.

node. In contrast, previous works on hierarchical structure [16, 13] all associate
a type variable with a template restricting the possible pose variation each node
can handle. Alternatively, we can also fix one type of a latent node (e.g. leg,
head, arm) and sample the remaining nodes. As shown in Fig. 5, our method
gives human-like extrapolation of poses, which is not shown in previous works.

Reconstruction. For reconstruction, we take one pose from the test sample,
allowing the part detectors to fire only at the groundtruth location, and run the
detection procedure. Once the best detection is obtained, we can reconstruct
the pose with just the type variables and remove all deformation. Such a recon-
structed pose has zero deformation score. The closer the reconstructed pose is
to the groundtruth pose, the better the spatial model can fit to the given pose.

Fig. 7 shows our model, once trained on PARSE, can reconstruct poses in the
test set of PARSE, better than nearest-neighbor. The average root-mean-square
error for our three-layered model is 7.19, and for our four-layered model it re-
duces to 6.55. Our error is lower than 14.63 computed from the Nearest-neighbor
approach that searches for the best globally matching pose in the training set. A
more flexible model [17] achieves slightly lower error (5.39) with 10 mixture com-
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Hierarchical model [from PARSE]

Pairwise Tree model [Yang and Ramanan]

Hierarchical model [from Leeds Sports Dataset]

Pairwise Tree model [Yang and Ramanan]

Fig. 6. Comparison between samples drawn from our hierarchical tree model and from
the pairwise tree model [17], both learned on PARSE dataset (top) and on Leeds
Sports dataset (bottom). Our model captures large variation of poses (especially for
Leeds Sports Dataset) and generates reasonable human-like poses. See supplementary
material for more samples.
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Groundtruth Our Model Yang&Ramanan Nearest Neighbor

Fig. 7. Reconstruction of poses in the test set with hierarchical model. Compared with
nearest neighbor and [17] trained on the same dataset, the hierarchical model can
recover the pose more accurately.

ponents for each part. For their original less-flexible model with 5-6 mixtures per
part, the reconstruction error is 7.47. This demonstrates that our model achieves
a good balance between creating human-like poses and reconstructability.

5.2 Performance on Benchmark Datasets

For the PARSE dataset, we use 5-6 mixtures for each leaf node, and 10 mixtures
for each hidden node. Our performance (in terms of PCP, the percentage of
parts being correctly detected) on the test set (205 images) is 74.4%, while [17]
achieves 74.9%. Fig. 8 shows that our hierarchical model can handle large pose
variations and also often tackle the double-counting problem with high-order
relationships among parts. Table 1 shows correctly detected ratio per part.

For the Leeds Sports dataset that contains large variations of pose, we use 15
mixtures for both leaf and hidden nodes. With only the first 200 training images,
we achieve 58.8%. For 1000 training images, they are evenly partitioned into 5
disjoint training sets, on which 5 separate models are trained. We simply put
the candidate detections of 5 models together to achieve 61.3%. Intuitively, this
means we take the maximum score of 5 models. In comparison, previous work [8]
achieves 55.2% with the same number of training samples, and [9] achieves 62.7%
with 11000 training samples. Table 1 shows the per-part performance and Fig. 9
shows examplar comparisons.

For the UIUC dataset, we use 5-6 mixtures for leaf nodes and 10 mixtures
for hidden nodes, which is the same as in the PARSE dataset. As a result, our
hierarchical model outperforms hierarchical poselets [16] by 45% (Table 1). The
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Dataset Method Torso Head U. Leg L. Leg U. Arm L. Arm Total

PARSE

JE [8] 85.4 76.1 73.4 65.4 64.7 46.9 66.2
YR [17] 97.6 93.2 83.9 75.1 72.0 48.3 74.9

Ours, 3-layer 97.1 92.2 85.1 76.1 71.0 45.1 74.4
Ours 4-layer 96.1 92.7 81.2 71.0 69.5 39.0 71.0

Leeds

JE [8] 78.1 62.9 65.8 58.8 47.4 32.9 55.1
Ours (first 200 training) 93.7 86.5 68.0 57.8 49.0 29.2 58.8

Ours (1000 training, 5 models) 95.8 87.8 69.9 60.0 51.9 32.9 61.3
JE [9] (11000 training) 88.1 74.6 74.5 66.5 53.7 37.5 62.7

UIUC
Wang et.al [16] 86.6 68.8 56.3 50.2 30.8 20.3 47.0
Our method 98.8 96.8 78.7 64.2 62.2 39.5 68.5

Table 1. Performance in PARSE, Leeds Sports and UIUC people dataset. For each
dataset, the performance of our method is on par with the state-of-art.

PARSE [12] Leeds Sports [8] UIUC people [15]

PARSE [12] 74.4 53.5 64.5

Leeds Sports Dataset [8] 67.0 61.3 64.3

UIUC people [15] 63.5 53.6 68.5

Table 2. Cross performance between 3 different datasets. Each row shows a model that
is trained on a single dataset (shown in left-most cell), and tested on the other datasets.
We can see our model generalizes well. Note that for Leeds Sports Dataset, we train 5
models, each taking 200 training as input, and combine the candidate detections.

loopy structure and the HoG poselet over a large image region may have lead to
their worse performance. See Table 1 for the per-part performance.

As shown in Table 1, a deeper hierarchy may hurt the performance since more
parameters need to be trained (estimated), resulting in overfitting. However, a
shallow one may fail to generalize well since one latent node will be required to
encode a large number of joint configurations of children.

We also train our model on one dataset using its training set, and evaluate it
on the test set of the other datasets. As shown in Table 2, our method generalizes
well across different datasets. In addition, the model trained on Leeds Sports
performs equally well on other datasets, showing Leeds Sports covers a variety
of poses and is a better dataset for a model to train on without overfitting.
PARSE is a specific dataset. Only a model trained on it performs well in test.

From our experiments, we conclude that our methods are on par with the
state of the art reported for two datasets and improve significantly over other
hierarchical methods. In the future, we will attempt to learn the hierarchical
structure automatically from the training data. In terms of applications, we will
apply this approach to tracking of human actions in videos.

Acknowledgement. This research was supported in parts by an ONR Grant
N00014-11-1-0295 and a Samsung Advanced Institute of Technology grant. Yuan-
dong Tian is supported by a Microsoft PhD fellowship.
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Left=Ours                   Right=Yang and Ramanan

Fig. 8. Comparison between our method (Left) and [17] (Right) on some test images of
PARSE dataset. Note that our model can handle large pose variation and occasionally
the double counting of arms and legs.

Fig. 9. Comparison between our method (Left) and [17] (Right) on Leeds Sports
dataset.
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