A Theoretical Framework for Deep and Locally Connected ReLU Network Arxiv: <u>https://arxiv.org/abs/1809.10829</u> Yuandong Tian, Facebook AI Research

Problem Setting

Define:What we want:
$$f_j(z_{\alpha}) \equiv \mathbb{E}_{x|z_{\alpha}} [f_j(x)]$$
 $f_j(z_{\alpha} = a) >$ $f_j(z_{\alpha} \neq a) \approx$ $f_j(z_{\alpha} \neq a) \approx$

First step [This paper]: Build a formulation first based on this setting and discuss about its properties

Theorem 1 (Recursive Property of marginalized gradient). $g_j(x_k) = \mathbb{E}_{x_{j,-k}|x_k} [g_j(x_j)]$

Notation of scalar quantities (all dependent on weights)

- $g_j(x)$ Gradient propagated to node j, when input is x w_{ik} Weights connecting node j to node k

Reformulation

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \hat{x}_i$$
$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$

Forward Disentanglement [Theorem 8]

If $P_{\alpha\beta}$ decomposes, F_{α} is disentangled, $W_{\beta\alpha}$ separates: Then F_{β} is also disentangled.

Weight update [Theorem 9]

If $P_{\alpha\beta}$ decomposes, F_{β} is disentangled, $W_{\beta\alpha}$ separates and G_{α} is also disentangled, then $\Delta W_{\beta\alpha}$ also separates.

Backward disentanglement

Still in progress ...