Deep Reinforcement Learning
and its Applications in Games

Yuandong Tian
Facebook Al Research

Overview

* Introduction: Al and Games

* Basic knowledge in Reinforcement Learning
* Q-learning
* Policy gradient
* Actor-critic models
 Game related approaches

e Case study
* AlphaGo Fan and AlphaGo Zero

e Our work

 DarkForest
e Doom Al bot
e ELF platform

Part |: Introduction

Al works in a lot of situations

Melanocytic lesions (dermoscopy)

Epidermal lesions Melanocytic lesions

| BNt e
L) ’
% | " 'ACCESS TO CITY
| Py i —_—
f 2 v @ |

BbiX0OA B roPOA

Malignant
~ad

I

e —

Object Recognition Medical Translation Speech Recognition

Who

posted it When it

posted

Type of
content

Interactions
with the post

Personalization Surveillance Smart Design Board game

What Al still needs to improve

Home Robotics Autonomous Driving ChatBot Question Answering

Less supervised data
Complicated/Unknown environments with lots of corner cases.
Common Sense

The Charm of Games

M O O - Brilliant.sgf - Gennan Inseki vs Honinbo Shusaku)

' AdllP- 4
__‘!j‘

e

EEE

[

Complicated long-term strategies. Realistic Worlds

Game as a Vehicle of Al

Infinite supply of Controllable and replicable Low cost per sample
fully labeled data

4 o

Faster than real-time Less safety and Complicated dynamics
ethical concerns with simple rules.

2

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

L

Abstract game to real-world Hard to benchmark the progress

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

Abstract game to real-world Hard to benchmark the progress

Better Algorithm/System Better Environment

What’s new in Game environment?

* Data are generated on the fly

* Agent not only learns from the data, but also choose which data to
learn.

Part Il: Reinforcement Learning

What is Reinforcement Learning?

State s

| Agent

Reward r

Action a

Environment <

What is Reinforcement Learning?
O

State:
where you are?

Action:
left/right/up/down

Next state:
where you are after the action?

What is Reinforcement Learning?

State:
(x,y)=(6,0)

Actions:
Left: x -=1
Right: x +=1
Up:y-=1
Down:y+=1

What is Reinforcement Learning?

State:

S = (Qj,y) — (670)

Actions:
left: T < x—1

Right: © < x +1
Up: y<+—y—1
Down: y <—y + 1

What is Reinforcement Learning?

2 PR I 4 _ ----------------------- »> U

Trajectory /

St+2

St+1

Goal of Reinforcement Learning

e R ot L ittt i > L

A
i

O
i Goal State

Goal of Reinforcement Learning

State s

| Agent

| Reward r |

Action a

Environment [+

It 41 Ft+2

o7 , Ai41 , CLt+24
Sy Jét—kl > S¢49 o0 ——

—+ 00
/
Maximize long-term reward: maxg *yt trt

t =t £

Key Quantities

State s

| Agent

| Reward r |

Action a

Environment [+

V() Maximal reward you can get starting from S
S “Value” of state S

Key Quantities

State s

| Agent

| Reward r |

Action a

Environment [+

Q(S CL) Maximal reward you can get starting from S
7 “Q-function” of state S and action (0

Bellman Equations

/7 7

Optimal solution

a

= r(s,a) + ymax

= max7r(s,a) +

V*

Qa

AlgO rithm lteratively table filling

Tabular Q-learning

Q") (5,) « 1(s,a) + max Q" (s'(s, a), o'

a

Value Iteration

V) (s) = maxr(s,a) + V"V (s (s, a))

As long as we can enumerate all possible states and actions

On trajectories

Q-learning

Q(n) (St7 a’t) A T(Sta a’t) - ,yma;XQ

a

=D (sy11,0a)

T (] I't4-2
¢ , i1 , At42
St Jbt_l_l "St—|—2 _ZQQO—b

On trajectories Parametric function

Q-learning
gn’)(St, at) < 7(s¢,at) + v max an_l)(St_|_1, a')

a

QQ (S, CL) now have generalization capability

How could you take the gradient w.r.t g >

On trajectories

Q-learning
én)(st’ at) — T(St, at) | VHE}X Qg/l_l)(StJrl, CL,)

Old fixed parameters

Target network

On trajectories

Q-learning

Qo(s1,ar) = (1= a)Qo(sr, ar) + v (54, ar) + ymax Qo (se41, a’)

[Mnih et al. Nature 2015]

Sample trajectories

Q-learning
gn,) (Sta at) < T(St, Clt) + 8 m?}X an_l) (St—|—17 CL,)

a

How could we sample a trajectory in the state space?

Behavior policy (3 (3)

On-policy versus Off-policy approaches

Off-policy, sampled by some behavior policy 3(-|s)

Expert behaviors (imitation learning)
Supervised learning

On-policy, sampled by the current models Q™ (s,a) (:|s)

Agent not only learns from the data, but also chooses which data to learn.

Policy gradient

T'¢ T't+1 TI't4+2
U : Udt4-1 , (t4-2 Trai
St Jét—l—l > St 19 —/0 o0 —> rajectory T

J(0) = Erpy(r) (7))

70 (a ‘ S) Probability of taking action”
given state S

7“(7‘) Cumulative reward along a trajectory 7T

Policy gradient

" It 41 T't+2
i : Udt4-1 , (t4-2 Traiect
St Jét—l—l /L St4-2 —ZQ o0 —> rajectory T

J(0) = Erpy(r) (7))

VoJ(0) =Erp,(r) [7(T)Velogpe(T)]

Policy gradient

Tt T't11 I't42
At , dt+1 , i +2 Traject
s, / St v 5449 _/. 0o — > rajectory T

VoJ(0) =E p, () 7(T) Vg log pe(T)]

T T
log pe(7) = logp(s1) + Zlog mo(at|st) + Zlogp(8t+1|8t, at)
t=1 t=1

Independent of ..ﬁ-.

Policy gradient

T'¢ T't+1 TI't4+2
U : Udt4-1 , (t4-2 Traiect
St Jét+1 > S¢4-9 —/0 o0 — rajectory T

T
Vo (0) = Erpyiry [7(7) Y Vologmg(als:)

t=1

Estimated by sampling 7Tg (CL|S)

Baseline

4:7'rvpe; (1) [VQ log pe (7_)] =0

Vo (0) =E,p,(r) [r(T)Velog pe(T)]

Vo (0) =E,py(r) [(r(T) — b) Vg log pe(7)]

/

Can be any function that only depends on state.

REINFORCE

7“(7‘ Actual reward obtained by rolling out from S

—_—
/// 7'2,7“(7'2)

— = —_ "7'3,7“(7'3)

T1,T

1 .
Vo (0) % = D |rilr) Y Vologmo(ais)

1=1 t=1

REINFORCE

7“(7‘) Actual reward obtained by rolling out from S

\/
// TQ,T(TQ) +
_ — () -

\/\7'4, 7“(7'4) e

Too many positive rewards.
We only want to pick the best of the best.

T1,T

REINFORCE

7“(7‘ Actual reward obtained by rolling out from S

//\/
TQ,T(TQ) + — b
\— T — "7'3,7“(7'3) - — b

\/\7'477°(7'4) .

b mean of all the rewards

T1,T — b

Actor-Critic Models 3 TR ia NP

T(T) ~ Qg (S, a) Rollout return as a parametric function (critic)

_” Estimated from TD difference in the data
A

b(S) — VQ (S) Use the value function as the baseline

(1) = b(s) = Qg (s,a) = Vy(s) = Ag (s, a)

Advantage function

“Advantageous Actor-Critic” .“

A2C / A3C

Viogm(a|st) (R — V(st))

_L> Update Policy network —-l—p Reward

» Update Value network +=———"

(R — V(st))VV(sy)

Encourage actions leading to states with high-than-expected value.
Encourage value function to converge to the true cumulative rewards.
Keep the diversity of actions

Part IlI: Algorithm used in Games

How Game Al works

Even with a super-super computer,
it is not possible to search the entire space.

How Game Al works

Even with a super-super computer,
it is not possible to search the entire space.

) E
1K w1
112 1
A
H RAa Black wins
A IS
ﬁ . .
b White wins
Lufei Ruan vs. Yifan Hou (2010) Black wins
] ; White wins
Black wins
199, A@fégﬁ Extensive search Evaluate Consequence

Current game situation

How Game Al works

How many action do you have per step?

Checker: a few possible moves » Alpha-beta pruning + Iterative deepening [Major Chess engine]
Poker: a few possible moves >< L ,
Chess: 30-40 possible moves Counterfactual Regret Minimization [Libratus, DeepStack]
Go: 100-200 possible moves » Monte-Carlo Tree Search + UCB exploration [Major Go engine]
StarCraft: 507100 possible moves > P77
S Actor
1 W 1
11 2 > Black wins
i
...................................... > White wins
... > Black wins
.. > White wins
... > Black wins
. | Extensive search Evaluate Consequence -'.
Current game situation c"

How Game Al works

How complicated is the game situation? How deep is the game?

Chess Rule-based

Go Linear function for situation evaluation [Stockfish]
Poker End game database

StarCraft

Random game play with simple rules [Zen, CrazyStone, DarkForest]
Deep Value network [AlphaGo, DeepStack]
Critic

Black wins

White wins

Black wins

White wins

Black wins

Extensive search Evaluate

4 Consequence
Current game situation

How to model Policy/Value function?

Non-smooth + high-dimensional
Sensitive to situations. One stone changes in Go leads to different game.

Traditional approach Deep Learning
e Many manual steps * End-to-End training
* Conflicting parameters, not scalable. * Lots of data, less tuning.

* Need strong domain knowledge. Minimal domain knowledge.

* Amazing performance

Alpha-beta Pruning

O P

P2

Fix depth

i Z—

good move
for P1

good move
for P2

bad move

- N W A OO N
- N W A OO N

A good counter move eliminates other choices.

Move order is important!

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

(a) (b) 0 (c)

2/10
2/10

9/10
9/10

P 1/1

== Tree policy P(s. g
~~P Default policy a;—= argmax(Q(St, a) + u(St, a)) u(s, Cl) X (>)

] 1+ N(s,a) 2

Part IV: Case Study

Pylp(als) Vy(s')
AlphaGo Fan '

: | L]
« Computations L ..
* Train with many GPUs and inference with TPU.

i
* Policy network .
* Trained supervised from human replays.

 Self-play network with RL.

* High quality playout/rollout policy
* 2 microsecond per move, 24:2%aceuracy. “30%

* Thousands of times faster than DCNN prediction.

* Value network
* Predicts game consequence for current situation.
* Trained on 30M self-play games.

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016

AlphaGo Fan

* Policy network SL (trained with human games)

Architecture Evaluation
Filters Symmetries Features Test accu- Trainaccu- Raw net AlphaGo Forward
racy % racy % wins % wins % time (ms)

128 1 48 54.6 57.0 36 53 2.8

192 1 48 55.4 58.0 50 50 4.8

256 1 48 559 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3
192 1 4 47.6 514 25 15 4.8

192 1 12 54.7 57.1 30 34 4.8

192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016

AlphaGo Fan

* Fast Rollout (2 microsecond), ~30% accuracy

o

E 0
© c
O ©
% (@)
=1
O Qo
0 X
%CD
5
=

0.50
0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -
0.15 -

0.10

------- Uniform random
rollout policy

------ Fast rollout policy
—— Value network

SL policy network
- -- RL policy network

15 45 75 105 135 165
Move number

195 225 255 >285

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016

2

AlphaGo Fan

* Value Network (trained via 30M self-played games)
* How data are collected?

Game start

! Current state

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016 .0.::'.

AlphaGo Fan

* VValue Network (trained via 30M self-played games)

Short Policy Value Rollouts Mixing Policy Value Elo
name network network constant GPUs GPUs rating
Qi Do Vo Pr A=0.5 2 6 2890 |
Oy Do Vo - A=0 2 6 2177
Oy Do — D A=1 3 0 24T|
oy D] Vg Dr A=0.5 0 8 2077
Qly D] Vo — A=0 0 8 1655
oy D] - Dr A=1 0 0 1457
Ol Do - - - 0 0 1517

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016 ‘0.::-.

AlphaGo Fan

b
3,500 - i) 3,500+
o)
g
3,000 - 5 %. 3,000+
=
o
2,500 2,500+
£ 2,000 a X 2,000~
(] > ,@,.
o g5 0
O ~ E
2 1,500- 1,500+
1,000 - 1,000
w
o)
500 - 2 = 500
2
0 - 0-
%%3 %3 én 5? c'§' éu g g Rollouts @ @ o e
2 B T < 2 § 9 Value network @ e o o
c® O < om (o)
&= O O —+ .
ol % Policy network @ @ @ [

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016

AlphaGo Zero

St

»> 1

S3

ot

2

tf

S

1

S

¢~
000

*3

AlphaGo Zero

(317 1, Z) Training
samples

for (9f,;_|_1

AlphaGo Zero

(s, 7T, 2)

N

J(0) = (2= Vy)* — ' log pg + c||0]|?

e Po(s)
= Vo(s)

ResNet

Elo rating

AlphaGo Zero

== Reinforcement learning

—3,000 7 == Supervised learning
=== AlphaGo Lee
4,000 , , ,
0 10 20 30 40 50 60 70

Training time (h)

Prediction accuracy
on professional moves (%)

707

60

50 1

40+

== Reinforcement learning
== Supervised learning

30 40 50 60
Training time (h)

T

70

MSE of professional

game outcomes

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

== Reinforcement learning
== Supervised |learning

0

10 20 30 40 50 60
Training time (h)

Using ResNet and shared network

4,500 - 0.53 0.20-

| 0.19-
] 0.18-
: 0.17 -
] I 0.16-
_ 0.15-
\/@

N eQ’Q/ ’2}/0 Q,Q/Q 6‘\’& eQ’Q/ ’I}/o Q,Q/o ..'.‘.

o 2

4,000 -

Elo rating

w

(&)}

o

o
Prediction accuracy

on professional moves (%)

o

N

©
MSE of professional

game outcomes

3,000 -

2,500 -

AlphaGo Zero Strength b

5,000
* 3 days version 4,000-
* 4.9M Games, 1600 rollouts/move
(@)
* 20 block ResNet £ 3,000
©
* Defeat AlphaGo Lee by 100:0. 5
2 2,000-
. 1,000+
* 40 days version _
* 29M Games, 1600 rollouts/move 0-
* 40 blocks ResNet. R
%)
* Defeat AlphaGo Master by 89:11 A0

Computation Time
Game Playing: 4 TPUs

Supervised network training
64 GPU (32 batchsize/GPU)
0.7 million mini-batch of size 2048 (370ms per batch)

.. : Using TPU, single rollout 0.25ms
Training data generation J ‘/g

4.9 M Games * 1600 rollouts/move (0.4s) * (~250 move/game)
= 15.5 years

4.7k game situations/sec

15.5 years / 3 days = 1890 machines 18.9 games / sec

Game as a Vehicle of Al

Algorithm is slow and data-inefficient Require a lot of resources.

Abstract game to real-world Hard to benchmark the progress

Better Algorithm/System Better Environment

Our work

Better Algorithm/System Better Environment

DarkForest Go Engine ELF: Extensive Lightweight and Flexible Framework

- (Yuandong Tian, Yan Zhu, ICLR16) (Yuandong Tian et al, arXiv)

a1 Doom Al
8% L (Yuxin Wu, Yuandong Tian, ICLR17)

Our computer Go player : DarkForest

* DCNN as a tree policy
* Predict next k moves (rather than next move)
* Trained on 170k KGS dataset/80k GoGoD, 57.1% accuracy.
e KGS 3D without search (0.1s per move)
* Release 3 month before AlphaGo, < 1% GPUs (from Aja Huang)

Conv layer Conv layers x 10 Conv layer b craiperlli] moliiax
Current board 25 feature planes 92 channels 384 channels k maps P
5 x 5 kernel 3 x 3 kernel 3 x 3 kernel

. . A - = -
g i ' Our next move (next-1)
ANty Ay

g i g Opponent move (next-2)
* (10 MY - mn_ o=

""""""""""""" Our counter move (next-3)

Our computer Go player : DarkForest

feature type: standard

1.
é —3¥—nstep=1
— —O—nstep=2
Name R nsep=3
Our/enemy liberties S 0.8
Ko location 17 f\
£
Our/enemy stones/empty place 8,0,7
©
Our/enemy stone history o)
Opponent rank g 0.6
E 0.5 ' ' ‘ : !
Feature used for DCNN 20 30 40 50 60 70

epoch

Our computer Go player : DarkForest

* DCNN+MCTS
* Use top3/5 moves from DCNN, 75k rollouts.
» Stable KGS 5d. Open source. https://github.com/facebookresearch/darkforestGo
3" place on KGS January Tournaments
« 2nd place in 9t UEC Computer Go Competition (Not this time ©)

DarkForest versus Koichi Kobayashi (9p)

Win Rate analysis (using DarkForest
AlphaGo versus Lee Sedol

1 Game1 Game2
1 LeeSedol — 1 LeeSedol
|]
] AlphaGo 08] AlphaGo —
]
0.8 -]
] 0.7
0.5
0])
‘é‘ 0.8 ‘é
| |
% g 0.5
0.4]
] 0.4 -
. 03]
02]
] 0.2
1] T 1

0 : ' : : 50 ' : ‘ 1 100 : ' 2 ' 1;0 : : : ' 200
move move

Win Rate analysis (using DarkForest

7 H: Master 2017/01/04 No.60 3000

Game ID: WCCI-2016-GO-164
100

75

-8~ Black
-~ White

50

Winrate (%)
PN

25

1 21 41 61 81 101 121 141 161 181 201 221

moveNo

Game ID: WCCI-2016-GO-230
100

75

-~ Black
[
50 ¢ -~ White

Winrate (%)

25

1 21 41 61 81 101 121 141 161 181 201 221 241

moveNo ;x

First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Play the game from the raw image!

Network Structure

e Sl ajala b YelC)]
%, —— HB_B_)I

- 215> | Conv+ReLU |B)| FC | Policy function 7r(a| S; W
. FC
wy W, shared
Regular Attention Game variables —’
frames (RGB) frames (RGB) (Health and ammo) Value function V (s; wy)

Simple Frame Stacking is very useful (rather than Using LSTM)

Curriculum Training

¢ [; ng
-

& ®
FlatMap

——

From simple to
complicated

% % s
e o [] [N J
o
e
o ==X
. QP %
&4
] g e[|o
[] []
® []
® ®
O] L]
[] []

T

ClIGTrackl

Curriculum Training

Class

Class

° o [] . L] ” []
‘0 olle Class0 | Class1 | Class2 | Class3 | Class4 | Class 5 | Class 6 | Class 7
AP Speed || 0.2 0.2 0.4 0.4 0.6 0.8 0.8 1.0
. . Health 40 40 40 60 60 60 80 100
" .
FlatMap
30 5
25 4 I Model O
B Model 1
320 3 = Model 2
uei 15 I Model 3
310 2 Model 4
@ Model 5
| || Il \|||| il gl ==
0 0 I JI JI JI L “l hl
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

VizDoom Al Competition 2016 (Track1)

We won the first place!

frags
1 F1 56 62 47 43 47 55 50 48 50 559

n/a 54
2 Arnold 36 34 42 36 36 45 36 39 n/a 33 36 413
3 CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 393
Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y
https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

Visualization of Value functions

Best 4 frames (agent is about to shoot the enemy)

Worst 4 frames (agent missed the shoot and is out of ammo)

ELF: Extensive, Lightweight and Flexible
Framework for Game Research

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick (NIPS 2017 Oral) ¢ 6\
\)(
_ (8)
https://github.com/facebookresearch/ELF @Unwatch~ 77 s Unstar 1.0Qze8<\" YFork 115
(@)
 Extensive

* Any games with C++ interfaces can be incorporated.
* Lightweight ' P
* Fast. Mini-RTS (40K FPS per core) Qche Cor - :
 Minimal resource usage (1GPU+several CPUs) 5 =one eney Shans
 Fast training (a couple of hours for a RTS game)

* Flexible kg
* Environment-Actor topology A
* Parametrized game environments. Yuxin Wu Larry Zitnick

e Choice of different RL methods.

Arxiv: https://arxiv.org/abs/1707.01067

How RL system works

Model

Optimizer

ELF design

Game 1 History buffer \ Batch with

. Daemon | : History info

: | Game 2 History buffer » (batch

. collector)

°

°

Game N History buffer Optimizer
Producer (Games in C++) Consumers (Python)

Plug-and-play; no worry about the concurrency anymore.

Possible Usage

 Game Research
* Board game (Chess, Go, etc)
* Real-time Strategy Game

* Complicated RL algorithms.

e Discrete/Continuous control
* Robotics

* Dialog and Q&A System

Initialization

Sample Usage
We run 1024 games concurrently.
num_games = 1024

Every time we wait for an arbitrary set of 256 games and return.
batchsize = 256

The return states contain key ’s’, ’r’ and ’terminal’
and the reply contains key ’a’, ’V’ and ’pi’, which is to be filled from the Python side.
Their definitions are defined in the C++ wrapper of the game.
desc = dict(
actor = dict(

batchsize=args.batchsize,

input=dict(T=1, keys=set(["s", "last_r", "last_terminal"])),

reply=dict(T=1, keys=set(["pi", "V", "a"]))

GameContext = InitializeGame(num_games, batchsize, desc)

Main Loop

Start all game threads
GameContext.Start ()

while True:
Wait until a batch of game states are returned.
Note that these game instances will be blocked.
batch = GameContext.Wait()
if batch.desc == "actor":
Apply a model to the game state. you can do forward/backward propagation here.
output = model(batch)

Sample from the output to get the actions of this batch.
reply[’pi’][:] = output[’pi’]

reply[’a’][:] = SampleFromDistribution(output)
reply[’V’][:] = output["V"]

Resume games.
GameContext.Steps()

Stop all game threads. .‘O.l.
GameContext.Stop ()

Training

desc = dict(

actor = dict(
batchsize=args.batchsize,
input=dict(T=1, keys=set(["s", "last_r", "last_terminal"])),
reply=dict(T=1, keys=set(["pi", "v", "a"l))

),

train = dict(
batchsize=args.batchsize,
input=dict (T=6, keys=set(["s", "last_r", "last_terminal", "a", "pi"l)),
reply=None

)

while True:

if batch["desc"] == "actor":
Act given the current states to move the game environment forward.
It could be an act for a game, for its internal MCTS search, etc.
elif batch["desc"] == "train":
Train your model. All the previous actions of the games and
their probabilities can be made available. ..'-‘.
[2 2 J

desc = dict(
actor0 = dict(
batchsize=args.batchsize,

|.f' | input=dict(T=1, keys=set(["s", "last_r", "last_terminal"])),
Se _P ay reply=dict(T=1, keys=set(["pi", "v", "a"l])),
filter=dict(id=0)
),
actorl = dict(
batchsize=args.batchsize,
input=dict(T=1, keys=set(["s", "last_r", "last_terminal"])),
reply=dict(T=1, keys=set(["pi", "v", "a"l)),
filter=dict(id=1)
),
train = dict(
batchsize=args.batchsize,
input=dict(T=6, keys=set(["s", "last_r", "last_terminal", "a", "pi"l)),
reply=None,
filter=dict (id=0)

)
)
while True:
if batch["desc"] == "actor0":
Act for player O
elif batch["desc"] == "actoril":
Act for player 1
elif batch["desc"] == "train":

Train your model only for player O.

Multi-Agent

desc = { }
for i in range(num_agents):
desc["actor’d" % il = dict(
batchsize=args.batchsize,
input=dict(T=1, keys=set(["s", "last_r", "last_terminal"])),
reply=dict(T=1, keys=set(["pi", "v", "a"l)),
filter=dict(id=1i)
)

while True:

for i in range(num_agents):
if batch["desc"] == "actor/d" % i:
Act for player i

Monte-Carlo Tree Search

desc = dict(
actor = dict(
batchsize=args.batchsize,
input=
dict(T=1,
keys=set ([

"sg", "last_r", "last_terminal"])),

reply=dict(T=1, keys=set(["pi", "v", "a"])),

)
while True:
batch = GameContext.Wait ()
if batch["desc"] == "actor":
Act for player. During MCTS search, one
game instance could send multiple requests
for python side to respond.
GameContext.Step ()

2

Flexible Environment-Actor topology

Environment |—| Actor

Environment

Environment |—| Actor

Environment Actor

Environment |—| Actor

(a) One-to-One
Vanilla A3C

Environment

(b) Many-to-One
BatchA3C, GA3C

Actor

Environment Actor

Actor

(c) One-to-Many
Self-Play,
Monte-Carlo Tree Search

RLPytorch

* A RL platform in PyTorch
* A3Cin 30 lines.
* Interfacing with dict.

A3C

def update(self, batch):
?22 Actor critic model ’?°
R = deepcopy(batch["V"][T - 1])
batchsize = R.size(0)
R.resize_(batchsize, 1)

for t in range(T - 2, -1, -1):
Forward pass
curr = self.model_interface.forward("model", batch.hist(t))

Compute the reward.

R = R * self.args.discount + batch["r"][t]

If we see any terminal signal, do not backprop

for i, terminal in enumerate(batch["terminal"] [t]):
if terminal: R[t][i] = curr["V"].datal[il

We need to set it beforehand.
self.policy_gradient_weights = R - curr["V"].data

Compute policy gradient error:

errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
Compute critic error

value_err = self.value_loss(curr["V"], Variable(R))

overall_err = value_err + errs["policy_err"]
overall_err += errs["entropy_err"] * self.args.entropy_ratio .,’.‘.
overall_err.backward() o

Architecture Hierarchy

ELF An extensive framework that can host many games.
Go ALE RTS Engine Specific game engines.
(DarkForest)‘// /\\
. ._ t
Pong Breakout Mini-RTS Capture Tower Environments

the Flag Defense

A miniature RTS engine

Your base

N

Your barracks Mini-RTS Gather resource and build
troops to destroy
opponent’s base.

Capture the Flag Capture the flag and bring

: it to your own base
Enemy unit

Tower Defense Builds defensive towers to

block enemy invasion.
Enemy base

Fog of War

1000-6000 ticks

1000-4000 ticks

1000-2000 ticks

70
60
5
4
3
2
1

o o o o O

o

Simulation Speed

KFPS per CPU core for Mini-RTS

64 threads 128 threads 256 threads 512 threads

KFPS per CPU core for Pong (Atari)

Platform ALE

FPS 6000

Platform DeepMind Lab

FPS 287(C) / 866(G)

B] core 6 B] core
® 2 cores — m 2 cores
= 4 cores 5 1 B 4cores
' 8 cores 4 8 cores
® 16 cores B 16 cores
3
2 B OpenAl Gym
I ELF
{d 'R !N 'R IR !
1024 threads 0 64 threads 128 threads 256 threads 512 threads 1024 threads
RLE Universe Malmo
530 60 120
VizDoom TorchCraft Mini-RTS
7,000 2,000 (Frameskip=50) | 40,000
6CPU + 1GPU

Training Al

Location of all range tanks

Location of all melee tanks

Location of all workers

7~

// Policy
z »| Conv || BN || RelLU
)
/ ~~ HP portion
~ Value
/ Resource
/ ---
Game visualization Game internal data

(respecting fog of war)

Using Internal Game data and A3C.
Reward is only available once the game is over. ’.'.‘

MINIRTS

=

0%

Building that can build workers and collect resources.

Resource unit that contains 1000 minerals.

Building that can build melee attacker and range attacker.

Worker who can build barracks and gather resource.
Low speed in movement and low attack damage.

Tank with high HP, medium movement speed, short attack
range, high attack damage.

Tank with low HP, high movement speed, long attack range and
medium attack damage.

Training Al

9 discrete actions.

No. | Actionname ______Descriptions

o A W N

IDLE

BUILD WORKER

BUILD BARRACK

BUILD MELEE ATTACKER
BUILD RANGE ATTACKER

HIT AND RUN

ATTACK
ATTACK IN RANGE
ALL DEFEND

Do nothing

If the base is idle, build a worker

Move a worker (gathering or idle) to an empty place and build a barrack.
If we have an idle barrack, build an melee attacker.

If we have an idle barrack, build a range attacker.

If we have range attackers, move towards opponent base and attack. Take
advantage of their long attack range and high movement speed to hit and
run if enemy counter-attack.

All melee and range attackers attack the opponent’s base.
All melee and range attackers attack enemies in sight.

All troops attack enemy troops near the base and resource.

Win rate against rule-based Al

Frame skip (how often Al makes decisions)

m Al_SIMPLE Al_HIT_AND_RUN

68.4(+4.3) 63.6(+7.9)
20 61.4(5.8) 55.4(+4.7)
10 52.8(+2.4) 51.1(5.0)

\ 4

Conv BN RelLU

Network Architecture

SIMPLE SIMPLE HIT_AND_RUN HIT_AND_RUN
(median) (mean/std) (median) (mean/std)

RelU 52.8 54.7(+4.2) 60.4 57.0(+6.8)
Leaky ReLU 59.8 61.0(+2.6) 60.2 60.3(+3.3)
RelU + BN 61.0 64.4(+7.4) 55.6 57.5(+6.8)

Leaky ReLU + BN 72.2 68.4(+4.3) 65.5 63.6(+7.9)

Best win rate in evaluation

0.75

0.55

Effect of T-steps

AI_SIMPLE

0 200

600

400
Samples used (in thousands)

Best win rate in evaluation

Large T is better.

AI_HIT_AND_RUN
0.75

= ——
4/""1‘7/"__
0.55 /
/[~T=4
~T=8
0.35 —T-1>
~T=16
~-T=20
159 200 400 600 800

Samples used (in thousands)

Transfer Learning and Curriculum Training

Mixture of SIMPLE_Al Combined
and Trained Al - Al_SIMPLE Al_HIT_AND_RUN (50%SIMPLE+50% H&R)

A
SIMPLE 68.4 (14.3) 26.6(+7.6) 47.5(5.1)
HIT_ AND_RUN 34.6(x13.1) 63.6 (£7.9) 49.1(+10.5)
] |
99% Combinea 49.4(+10.0) 46.0(+15.3) 47.7(+11.0)
(No curriculum)
Combined 51.8(+10.6) 54.7(+11.2) 53.2(+8.5)

Highest win rate against Al_SIMPLE: 80%

S 323 | ALSIMPLE | AI_HIT_AND_RUN | CAPTURE_THE_FLAG

Training time .
JWIthout = g0 0 (+2.4) 54.4 (+15.9) 54.2 (+20.0)
curriculum training

: With .. 68.4 (+4.3) 63.6 (£7.9) 59.9 (+7.4)
curriculum training

Monte Carlo Tree Search

| MiniRTS (AI_SIMPLE) | MiniRTS (Hit_and_Run)

Random 24.2 (+3.9) 25.9 (+0.6)
MCTS 73.2 (+0.6) 62.7 (+2.0)

MCTS evaluation is repeated on 1000 games, using 800 rollouts.
MCTS uses complete information and perfect dynamics

Thanks!

