
Deep	Reinforcement	Learning	
and	its	Applications	in	Games

Yuandong	Tian

Facebook	AI	Research



Overview

• Introduction:	AI	and	Games

• Basic	knowledge	in	Reinforcement	Learning

• Q-learning

• Policy	gradient

• Actor-critic	models

• Game	related	approaches

• Case	study

• AlphaGo Fan	and	AlphaGo Zero

• Our	work

• DarkForest

• Doom	AI	bot

• ELF	platform



Part	I:	Introduction



AI	works	in	a	lot	of	situations

Medical Translation

Personalization Surveillance

Object	Recognition

Smart	Design

Speech	Recognition

Board	game



What	AI	still	needs	to	improve	

Less	supervised	data

Complicated/Unknown	environments	with	lots	of	corner	cases.

Common	Sense

Home	Robotics Autonomous Driving ChatBot StarCraft Question	Answering



The	Charm	of	Games

Complicated long-term strategies. Realistic Worlds



Game	as	a	Vehicle	of	AI

Less	safety	and	

ethical concerns

Faster	than	real-time

Infinite supply	of	

fully labeled	data
Controllable and replicable Low cost	per sample

Complicated	dynamics	

with	simple	rules.



Game	as	a	Vehicle	of	AI

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



Game	as	a	Vehicle	of	AI

Better	Algorithm/System Better	Environment

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



• Data	are	generated	on	the	fly

• Agent	not	only	learns	from	the	data,	but	also	choose	which	data	to	
learn.	

What’s	new	in	Game	environment?



Part	II:	Reinforcement	Learning



What	is	Reinforcement	Learning?

Agent

Environment

Action	a

State	s

Reward	r



What	is	Reinforcement	Learning?

State:	

where	you	are?

Action:	

left/right/up/down

Next	state:	

where	you	are	after	the	action?



What	is	Reinforcement	Learning?

State:	

(x,	y)	=	(6,	0)

Actions:	

Left:	x	-=1

Right:	x	+=	1

Up:	y	-=	1

Down:	y	+=	1



What	is	Reinforcement	Learning?

State:	

Actions:	

Left:	

Right:

Up:	

Down:



What	is	Reinforcement	Learning?

Trajectory



Goal	of	Reinforcement	Learning

Goal	State



Goal	of	Reinforcement	Learning

Agent

Environment

Action	a

State	s

Reward	r

Maximize	long-term	reward:	



Key	Quantities

Maximal	reward	you	can	get	starting	from	

“Value”	of	state

Agent

Environment

Action	a

State	s

Reward	r



Key	Quantities

Maximal	reward	you	can	get	starting	from	

“Q-function”	of	state						and	action

Agent

Environment

Action	a

State	s

Reward	r



Bellman	Equations

Optimal	solution



Algorithm

As	long	as	we	can	enumerate	all	possible	states	and	actions

Tabular	Q-learning

Value	Iteration

Iteratively	table	filling



On	trajectories

Q-learning



On	trajectories

Q-learning

Parametric	function

now	have	generalization	capability

How	could	you	take	the	gradient	w.r.t ?



On	trajectories

Q-learning

Old	fixed	parameters

Target	network



On	trajectories

Q-learning

[Mnih et	al.	Nature	2015]



Sample	trajectories

How	could	we	sample	a	trajectory	in	the	state	space?

Q-learning

Behavior	policy



On-policy	versus	Off-policy	approaches

Off-policy,	sampled	by	some	behavior	policy

Expert	behaviors	(imitation	learning)	

Supervised	learning

On-policy,	sampled	by	the	current	models

Agent	not	only	learns	from	the	data,	but	also	chooses	which	data	to	learn.	



Policy	gradient

Cumulative	reward	along	a	trajectory

Trajectory	

Probability	of	taking	action

given	state



Policy	gradient

Trajectory	



Policy	gradient

Independent	of	

Trajectory	



Policy	gradient

Trajectory	

Estimated	by	sampling



Baseline

Can	be	any	function	that	only	depends	on	state.



REINFORCE

Actual	reward	obtained	by	rolling	out	from	



REINFORCE

Actual	reward	obtained	by	rolling	out	from	

+

+

-

+
Too	many	positive	rewards.

We	only	want	to	pick	the	best	of	the	best.	



REINFORCE

Actual	reward	obtained	by	rolling	out	from	

+

+

-

+
mean	of	all	the	rewards



Actor-Critic	Models

Use	the	value	function	as	the	baseline

Rollout	return	as	a	parametric	function	(critic)

Advantage	function

“Advantageous	Actor-Critic”

Estimated	from	TD	difference	in	the	data



A2C	/	A3C

Update Policy	network

Update	Value	network

Reward

Encourage	actions	leading	to	states	with	high-than-expected	value.

Encourage	value	function	to	converge	to	the	true	cumulative	rewards.

Keep	the	diversity	of	actions

sT

s0

V (sT )



Part	III:	Algorithm	used	in	Games



How	Game	AI	works

Even	with	a	super-super	computer,	

it	is	not	possible	to	search	the	entire	space.



How	Game	AI	works

Extensive	search Evaluate	

Even	with	a	super-super	computer,	

it	is	not	possible	to	search	the	entire	space.

Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

Current	game	situation

Lufei Ruan vs. Yifan Hou (2010)



How	Game	AI	works

Extensive	search Evaluate	 Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

How	many	action	do	you	have	per	step?

Checker:	a few possible	moves

Poker:	a few possible	moves

Chess:	30-40 possible	moves

Go:	100-200 possible	moves

StarCraft:	50^100	possible	moves

Alpha-beta	pruning	+	Iterative	deepening	[Major	Chess	engine]

Monte-Carlo	Tree	Search	+	UCB	exploration	[Major	Go	engine]

???

Counterfactual	Regret	Minimization	[Libratus,	DeepStack]

Current	game	situation

Actor



How	Game	AI	works

Extensive	search Evaluate	 Consequence

Black	wins

White	wins

Black	wins

White	wins

Black	wins

How	complicated	is	the	game	situation?	How	deep	is	the	game?

Chess

Go

Poker

StarCraft

Linear	function	for	situation	evaluation	[Stockfish]

Deep	Value	network	[AlphaGo,	DeepStack]

Random	game	play	with	simple	rules	[Zen,	CrazyStone,	DarkForest]

End	game	database

Rule-based

Current	game	situation

Critic



How	to	model	Policy/Value	function?

• Many	manual	steps

• Conflicting	parameters,	not	scalable.

• Need	strong	domain	knowledge.	

• End-to-End	training

• Lots	of	data,	less	tuning.

• Minimal	domain	knowledge.

• Amazing	performance

Traditional	approach Deep	Learning

Non-smooth	+	high-dimensional	

Sensitive	to	situations.	One	stone	changes	in	Go	leads	to	different	game.



Alpha-beta	Pruning

P2

P1 Move	order	is	important!
good	move

for	P1

good	move

for	P2

bad	move

for	P1

A	good	counter	move	eliminates	other	choices.

Fix	depth



Monte	Carlo	Tree	Search

2/10

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40
2/10

1/1

21/31

11/19

10/11

10/12

1/8

23/41

1/1

(a) (b) (c)

Tree policy

Default policy

Aggregate	win	rates,	and	search	towards	the	good	nodes.	

PUCT



Part	IV:	Case	Study



AlphaGo Fan
• Computations

• Train	with	many GPUs	and	inference	with	TPU.

• Policy	network

• Trained	supervised	from	human	replays.	

• Self-play	network	with	RL.	

• High	quality	playout/rollout	policy

• 2	microsecond	per	move,	24.2%	accuracy. ~30%

• Thousands	of	times	faster	than	DCNN	prediction.

• Value	network

• Predicts	game	consequence	for	current	situation.	

• Trained	on	30M	self-play	games.	

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Fan
• Policy	network	SL	(trained	with	human	games)	

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Fan

• Fast	Rollout	(2	microsecond),	~30% accuracy

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Fan

• Value	Network (trained via 30M self-played games)

• How data are collected?

Game start

Current state

Sampling SL network

(more diverse moves)

Game terminates

Sampling RL network (higher win rate)

Uniform

sampling

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Fan

• Value	Network (trained via 30M self-played games)

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Fan

“Mastering the game of Go with deep neural networks and tree search”, Silver et al, Nature 2016



AlphaGo Zero



AlphaGo Zero

MCTS

Training	

samples	

for	



AlphaGo Zero

ResNet



AlphaGo Zero



Using	ResNet and	shared	network



AlphaGo Zero	Strength

• 3	days	version

• 4.9M	Games,	1600	rollouts/move

• 20	block	ResNet

• Defeat	AlphaGo Lee	by	100:0.	

• 40	days	version

• 29M	Games,	1600	rollouts/move

• 40	blocks	ResNet.

• Defeat	AlphaGo Master	by	89:11



Computation	Time

Game	Playing:	4	TPUs

Supervised	network	training

64	GPU	(32	batchsize/GPU)

0.7	million	mini-batch	of	size	2048	(370ms	per	batch)	

Training	data	generation

4.9	M	Games	*	1600	rollouts/move	(0.4s)	*	(~250	move/game)

=	15.5	years

15.5	years	/	3	days	=	1890	machines

Using	TPU,	single	rollout	0.25ms

4.7k	game	situations/sec

18.9	games	/	sec



Game	as	a	Vehicle	of	AI

Better	Algorithm/System Better	Environment

？

Abstract	game	to	real-world

Algorithm	is	slow	and	data-inefficient Require	a	lot	of	resources.		

Hard	to	benchmark	the	progress



Our	work

DarkForest Go	Engine
(Yuandong	Tian,	Yan	Zhu,	ICLR16)

Doom	AI
(Yuxin Wu,	Yuandong	Tian,	ICLR17)

ELF:	Extensive	Lightweight	and	Flexible	Framework
(Yuandong	Tian	et	al,	arXiv)

Better	Algorithm/System Better	Environment



Our	computer	Go	player： DarkForest

• DCNN	as	a	tree	policy	

• Predict	next	k	moves	(rather	than	next	move)

• Trained	on	170k	KGS	dataset/80k	GoGoD,	57.1% accuracy.

• KGS	3D	without	search	(0.1s	per	move)

• Release	3	month	before	AlphaGo,	<	1%	GPUs	(from	Aja	Huang)



Name

Our/enemy	liberties

Ko location

Our/enemy	stones/empty	place

Our/enemy	stone	history

Opponent rank

Feature	used	for	DCNN

Our	computer	Go	player： DarkForest



• DCNN+MCTS

• Use	top3/5	moves	from	DCNN,	75k	rollouts.

• Stable	KGS	5d.	Open	source.	

• 3rd place	on	KGS	January	Tournaments

• 2nd place	in	9th UEC	Computer	Go	Competition	(Not	this	time	J)

DarkForest versus	Koichi	Kobayashi	(9p)	

Our	computer	Go	player： DarkForest

https://github.com/facebookresearch/darkforestGo



Win	Rate	analysis	(using	DarkForest)	
(AlphaGo versus	Lee	Sedol)



Win Rate analysis (using	DarkForest)



First	Person	Shooter	(FPS)	Game

Play	the	game	from	the raw image!

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu



Network	Structure

Simple	Frame	Stacking is	very	useful	(rather	than	Using	LSTM)



Curriculum	Training

From	simple	to	

complicated



Curriculum Training



VizDoom AI	Competition	2016 (Track1)

Rank Bot 1 2 3 4 5 6 7 8 9 10 11
Total

frags

1 F1 56 62 n/a 54 47 43 47 55 50 48 50 559

2 Arnold 36 34 42 36 36 45 36 39 n/a 33 36 413

3 CLYDE 37 n/a 38 32 37 30 46 42 33 24 44 393

Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y

https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

We	won	the	first	place!





Visualization	of	Value	functions
Best	4	frames	(agent	is	about	to	shoot	the	enemy)

Worst	4	frames	(agent	missed	the	shoot	and	is	out	of	ammo)



ELF:	Extensive,	Lightweight	and	Flexible	
Framework	for	Game	Research

• Extensive
• Any	games	with	C++	interfaces	can	be	incorporated.

• Lightweight
• Fast.	Mini-RTS	(40K	FPS	per	core)

• Minimal	resource	usage	(1GPU+several	CPUs)

• Fast training (a couple of hours for a RTS game)

• Flexible
• Environment-Actor	topology

• Parametrized game	environments.

• Choice	of	different	RL	methods.	

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick (NIPS 2017 Oral)

Arxiv:	https://arxiv.org/abs/1707.01067

Larry Zitnick

Qucheng Gong Wendy Shang

Yuxin Wu

https://github.com/facebookresearch/ELF



How RL system works

Game	1

Game	N

Game	2

Consumers (Python)

Actor

Model

Optimizer

Process 1

Process 2

Process N

Replay Buffer



ELF	design

Plug-and-play; no worry about the concurrency anymore.

Game	1

Game	N

Daemon

(batch

collector)

Producer	(Games	in	C++)

Game	2

History buffer

History buffer

History buffer

Consumers (Python)

Reply

Batch	with

History	info	

Actor

Model

Optimizer





Possible	Usage

• Game	Research

• Board	game	(Chess,	Go,	etc)

• Real-time	Strategy	Game

• Complicated RL algorithms.

• Discrete/Continuous	control

• Robotics

• Dialog	and	Q&A	System



Initialization



Main	Loop



Training



Self-Play



Multi-Agent



Monte-Carlo Tree Search

1/1

2/10

2/10

1/1

20/30

10/18

9/10

10/12

1/8

22/40



Flexible	Environment-Actor	topology

(b) Many-to-One (c) One-to-Many

Environment Actor

(a) One-to-One

Vanilla A3C BatchA3C, GA3C Self-Play, 
Monte-Carlo Tree Search

Environment Actor

Environment Actor

Environment

Environment Actor

Environment

Actor

Environment Actor

Actor



RLPytorch

• A	RL	platform	in	PyTorch

• A3C	in	30	lines.

• Interfacing	with	dict.



Architecture Hierarchy

ELF

RTS EngineALEGo

(DarkForest)

Mini-RTS Capture

the Flag
Tower

Defense

An extensive framework that can host many games.

Specific game engines.

Environments
Pong Breakout



A	miniature	RTS	engine

Enemy base

Your base

Your barracks

Worker

Enemy unit

Resource Game Name Descriptions Avg Game Length

Mini-RTS Gather resource and build 
troops to destroy 
opponent’s base. 

1000-6000 ticks 

Capture the Flag Capture the flag and bring 
it to your own base

1000-4000 ticks

Tower Defense Builds defensive towers to 
block enemy invasion.

1000-2000 ticks

Fog of War



Simulation Speed

Platform ALE RLE Universe Malmo

FPS 6000 530 60 120

Platform DeepMind Lab VizDoom TorchCraft Mini-RTS

FPS 287(C) / 866(G)

6CPU	+	1GPU

7,000 2,000 (Frameskip=50) 40,000



Training AI

Conv ReLUBN

x4

Policy

Value

Game visualization Game internal data

(respecting	fog	of	war)

Location of all workers

Location of all melee tanks

Location of all range tanks

HP portion

Using	Internal Game data and A3C.	

Reward	is	only	available	once	the	game	is	over.

Resource



MiniRTS

Building	that	can	build	workers	and	collect	resources.	

Resource	unit	that	contains	1000	minerals.	

Worker	who	can	build	barracks	and	gather	resource.	

Low	speed	in movement and	low	attack	damage.	

Building	that	can	build	melee	attacker	and	range	attacker.	

Tank	with	high	HP,	medium	movement	speed,	short	attack	

range,	high	attack	damage.	

Tank	with	low	HP,	high	movement	speed,	long	attack	range	and	

medium	attack	damage.	



Training AI

9 discrete actions.

No. Action name Descriptions

1 IDLE Do nothing

2 BUILD	WORKER If the base is idle, build a worker

3 BUILD	BARRACK Move	a	worker	(gathering	or	idle)	to	an	empty	place	and	build	a	barrack.	

4 BUILD	MELEE	ATTACKER	 If	we	have	an	idle	barrack,	build	an	melee	attacker.	

5 BUILD	RANGE	ATTACKER	 If	we	have	an	idle	barrack,	build	a range attacker.	

6 HIT	AND	RUN	

If	we	have	range	attackers,	move	towards	opponent	base	and	attack.	Take	

advantage	of	their	long	attack	range	and	high	movement	speed	to	hit	and	

run	if	enemy	counter-attack.	

7 ATTACK	 All	melee	and	range	attackers	attack	the	opponent’s	base.	

8 ATTACK	IN	RANGE	 All	melee	and	range	attackers	attack	enemies	in	sight.	

9 ALL	DEFEND All	troops	attack	enemy	troops	near	the	base	and	resource.	



Win rate against rule-based AI

Frame skip AI_SIMPLE AI_HIT_AND_RUN

50 68.4(±4.3) 63.6(±7.9)	

20 61.4(±5.8)		 55.4(±4.7)

10 52.8(±2.4) 51.1(±5.0)	

SIMPLE

(median)

SIMPLE

(mean/std)

HIT_AND_RUN

(median)

HIT_AND_RUN

(mean/std)

ReLU 52.8 54.7(±4.2) 60.4 57.0(±6.8)

Leaky ReLU 59.8 61.0(±2.6) 60.2 60.3(±3.3)

ReLU + BN 61.0 64.4(±7.4) 55.6 57.5(±6.8)

Leaky ReLU + BN 72.2 68.4(±4.3) 65.5 63.6(±7.9)

Frame skip (how often AI makes decisions)

Network Architecture Conv ReLUBN



Effect of T-steps

Large T is better.



Transfer Learning and Curriculum Training

AI_SIMPLE AI_HIT_AND_RUN
Combined

(50%SIMPLE+50% H&R)

SIMPLE 68.4	(±4.3) 26.6(±7.6) 47.5(±5.1)

HIT_AND_RUN 34.6(±13.1)	 63.6	(±7.9)	 49.1(±10.5)

Combined

(No curriculum)
49.4(±10.0)	 46.0(±15.3)	 47.7(±11.0) 

Combined 51.8(±10.6)	 54.7(±11.2)	 53.2(±8.5)	

AI_SIMPLE AI_HIT_AND_RUN CAPTURE_THE_FLAG

Without

curriculum training
66.0 (±2.4) 54.4 (±15.9) 54.2	(±20.0)

With

curriculum training
68.4 (±4.3) 63.6	(±7.9) 59.9	(±7.4)

Mixture	of	SIMPLE_AI	

and	Trained	AI

Training	time

99%

Highest win rate against AI_SIMPLE: 80%



Monte Carlo Tree Search

MiniRTS (AI_SIMPLE) MiniRTS (Hit_and_Run)

Random 24.2 (±3.9) 25.9 (±0.6)

MCTS 73.2 (±0.6) 62.7 (±2.0)

MCTS uses complete information and perfect dynamics

MCTS evaluation is repeated on 1000 games, using 800 rollouts.





Thanks!


