Building Scalab

e Syste

Learning and Using Rei

for

Research Scientist and Manager

facebook Artificial Intelligence

msfor

nforce

Presented by Yuandong Tian

Facebook Al Research

Reinforcement

ment Learning

Setter Systems

Overview

N

Building Scalable System for Learn Hand-tuned Heuristics
Reinforcement Learning (RL) by RL/ ML

N -

Building Scalable System for RL

Crash Course of Reinforcement Learning

Reinforcement Learning works, but expensive

2016 DeepMind’s AlphaGo ~50 GPUs + ? CPUs ~1 week
DeepMind’s AlphaGo Zero ~

2017 (20 blocks) No 2000 TPUs 3 days

2017 DeepMind’s AlphaZero (20 blocks) No ~5000 TPUs 8 hours

2018 OpenAl Five No 128,000 CPUs + 256 GPUs Several months

2019 DeepMind’s AlphaStar Yes 16,000 CPUs + 3072 TPUv3 cores 44 days

facebook Artificial Intelligence

Challenges in large-scale RL Training System

* Trade-offs in a heterogenous system
* Different kind of objects: Actor / Environment / Trainer / Replay buffer
CPUs / GPUs Allocations
Multi-threading versus Multiple Processes, Batching issues
Local versus Distributed

Synchronization / Asynchronization.
* On-policy versus off-policy methods

* Perfect synchronization might NOT give you the best performance

* Mingled Algorithm Design and System Design
* New System design €= New RL algorithm

Distributed System for training RL agent

DQN Loss Optimizer + Connected Rollout Workers (x256)
Rollout Workers
~500 CPUs

Run episodes
*+ 80% against current

Gradient

Optimizel
wrt loss LZ 3

e
max,Q(s;a’; 67) Sampled experience 1p100 GPU

bot
Learner Repl ay « 20% against mixture of past versions Compute Gradients i
argmax, Q(s,a; 6) Updated priorities OO T “ith Adam
Push data every 60s of gameplay « Batches of 4096 observations

Network Experiences Discount rewards across the 605 using < BPTT over 16 observations

generalized advantage estimation

Q Network

Actor

Model Parameters.

Network Initial priorities
Network parameters
Generated experience Eval Workers
Environment ~2500 CPUs
Play in various environments Model
for evaluation Parameters

« vs hardcoded “scripted” bot
= vs previous similar bots (used to
compute Trueskill)

= vs self (for humans to watch
and analyze)

GORILLA Ape-X / R2D2 OpenAl Rapid

[Distributed Prioritized Experience Replay, Horgan et al, ICLR 2018]
[Recurrent Experience Replay in Distributed Reinforcement Learning
Kapturowski et al, ICLR 2019]

[Massively Parallel Methods for Deep
Reinforcement Learning, AAAI 2015]

facebook Artificial Intelligence

ELF:RL Framework for Game Researc

C++

Yuxin Wu Larry Zitnick

Batch Batch Batch Batch Batch
0 | I | m——
1 | I —

|
2 Y p N § DTS N R —
|

Game 3 T | eeees—m | S—— —
Threads 4 — meeeeeeeeeees | e | e ——
5 I e | esssseesssse———" | EEE——— ——
6# I | e ———>
7* eeseeeees | BeeEs—— ———>

Python

facebook Artificial Intelligence

while True:
batched_states = GameContext.Wait()
replies = model(batched_states)
GameContext.Steps (replies) [ELF: Extensive, Lightweight and Flexible Framework for

Game Research, Tian et al, NeurlPS 2019]

AlphaGoZero/ AIphaZero

AlphaGo Zero

Starting from seratch

1~”1| __+_ 2””2
Generate
Training data A ’i“ AAAAAAAA £ {}\A A,{}ﬂ .
A
Without human knowledge

Updat '

0, < pdate 1, Self-Replays
Models

facebook Artificial Intelligence

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Generate Self-play Games

(31’ 1, Z) Training

samples
(82’ 12 Z) for ;-+1
1

Monte Carlo Tree Search

with current model | |

Update Models

O |+ Brilliant.sgf - Gennan Insel

Honinbo Shusaku
e

i vs
” # .
S, 4

[5 v [

. S Player situation ~ Opponent situation

.) Player situation at t=-7
at time O attime O

.~ Color to play

Input features (19x19x17): (X, Y, X _1,Y_q,..., X_7.Y_7,C)

™, 2

Obijective: A/(S]K)A
J(0) = (z — V9)2 — 7l logpy + CH(9H2

facebook Artificial Intelligence

AlphaGo Zero Strength

5,000
* 3 days version 4,000-
* 49M Games, 1600 rollouts/move 2 3000-
* 20 block ResNet © :
* Defeat AlphaGo Lee. 5 2,000-
1,000-
* 40 days version 0.
e 29M Games, 1600 rollouts/move R\
* 40 blocks ResNet. 0(7’}“A
* Defeat AlphaGo Master by 89:11 Qﬁ\?@;
A\

facebook Artificial Intelligence

The Mystery of AlphaZero

* Mystery
* Is the proposed algorithm really universal?
* Is the bot almighty? Is there any weakness in the trained bot?

e Lack of Ablation Studies

* What factor is critical for the performance?

* |Is the algorithm robust to random initialization and changes of hyper
parameterss

* Any adversarial samples?

Impressive Results, No code, No model

ELF OpenGo

* System can be trained with 2000 GPUs in 2 weeks (20 block version)
* Superhuman performance against professional players and strong bots.

* Abundant ablation analysis.

Yuandong Tian Jerry Ma* Qucheng Gong* Shubho Sengupta* Zhuoyuan Chen James Pinkerton Larry Zitnick

L) pytorch / ELF @uUnwatch~ 174 % Unstar 2,842 YFork 472
<> Code Issues 36 Pull requests 3 Projects 0 Wiki Security Insights Settings Intern Dashboard
ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation Edit

reinforcement-learning alphago-zero rl rl-environment alpha-zero go Manage topics
D 67 commits ¥ 11 branches © 5 releases -4 1 environment A2 5 contributors sfs View license

We open source the code and the pre-trained model for the Go and ML community

facebook Artificial Intelligence [F] F OpenGo.: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

FLF OpenGo Performance

Vs top professional players 1.0
[T T T
Kim Ji-seok 3590 (#3) 0.5
Shin Jin-seo 3570 (#5) 5-0 v
Park Yeonghun 3481 (#23) 5-0 fc
Choi Cheolhan 3466 (#30) 5-0 0.0
Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players
Vs professional players —0.5 l |
_ _ 0 100 200 300
Single GPU, 2k rollouts, 27-0 against Taiwanese pros. Move number

Vs strong bot (LeelaZero)
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

facebook Artificial Intelligence

http://zero.sjeng.org/networks/158603eb61a1e5e9dcd1aee157d813063292ae68fbc8fcd24502ae7daf4d7948.gz

Distributed ELF (version 1, AlphaGoZero)

Selfplay 1

Selfplay 2 ®

V\\\

Selfplay data

Training

Current trained model

Current best model

procedure
(8 GPUs)

>

o o Selfplay n

’
/
/

Evaluation
Server

N Update best model

and.next candidate

1 (o)
Model Zoo Win rate > 55%

~

/
/
/
/
/
/
/
/
/
/
/
/
‘/ -
\
\
\
\
\
\

/

/
/

\
\

<

4 Evaluation 1

Evaluation 2

* Evaluation m

Distributed ELF (version 1)

Opena port
Receive selfplay data via ZeroMQ

Training Current trained model

>
procedure

8 GPUs

Distributed ELF (version 1)

Selfplay 1

V\\\

Selfplay 2

® o |Selfplayn| 300-2k GPUs

Current best model

’
/
/

Each selfplay client
batches 32 parallel games
in a batch size of 128

Distributed ELF (version 1)

No GPU needed /

~

Evaluation |

Server
Update best model
and.néext candidate
Win rate > 55% «

facebook Artificial Intelligence

Distributed ELF (version 1)

100 GPUs

4 Evaluation 1

Send the current model

pairs to evaluate

- Evaluation 2
" °
o
o

* Evaluation m

Each evaluation client
batches 2 parallel games

Distributed ELF (v2)

Client
) Training
Client |- 1 Server
Client Client

Putting AlphaGoZero and AlphaZero

Evaluate/Selfplay into the same framework

Client

AlphaGoZero (more synchronization)
AlphaZero (less synchronization)

Send request

(game params) Client

Receive
experiences Server controls synchronization

Server also does training.

Client

PYTHRCH

Next Step: RL Assembly

* Backbone infrastructure for ongoing projects (Hanabi, Bridge, etc)

* Reimplementation of SOTA off-policy RL methods like Ape-X and R2D2
* Incorporate OpenGo and SOTA implementation of MCTS.

* Efficient on single machine (SoTA training FPS so far)

Open source soon

Frame Per Second (FPS) on Atari Games

RelA: 12.5 KFPS
using 40 CPU cores + 2 GPU (P100) on a single machine

Ape-X: 12.5 KFPS
using 360 CPU cores + 1 GPU (distributed system)

e RelA is GPU bound. Performance is better with more GPUs

 Afew more improvements to achieve better performance when releasing.

Architecture

e

Env

Env

Env

Env

Env

Env

ThreadLoop

Batch Obs

Batch Action

Actor

Data

Update Actor Model

facebook Artificial Intelligence

///

(Prioritized) Replay
Buffer

Mini-Batches
&

Priority

Trainer

User Interface (API)

env = rela.VectorEnv()
for _ in range(num_env_per_thread):
game = create_atari(...)

env.append(game)
actor = rela.DQNActor(...)
thread = rela.ThreadLoop(actor, env)

All objects (env, agent, replay buffer, etc) are created & configured in Python

acebook Artificial Intelligence

PYTHRCH

User Interface (API)

class ApexAgent(torch.jit.ScriptModule):
@torch.jit.script_method
def td_err(self, obs: Dict[str, torch.Tensor], ...) —> torch.Tensor:
online_q = self.online_net(obs)
online_qa = online_g.gather(1l, action.unsqueeze(1l)).squeeze(1)

next_a = self.greedy_act(next_obs)

bootstrap_q = self.target_net(next_obs)

bootstrap_qga = bootstrap_q.gather(1l, next_a.unsqueeze(1l)).squeeze(1l)

target = reward + bootstrap *x (self.gamma **x self.multi_step) * bootstrap_qa
return target.detach() - online_qa

Model is written in Python with PyTorch’s TorchScript,
and executed in C++ with multi-threading for maximum throughput.

facebook Artificial Intelligence

PYTHRCH

Native integration with PyTorch C++ AP

* Simple/Intuitive manipulations of PyTorch tensors in C++
e Same as/Similar to Python Interface
* No extra library needed for operations like downsample/upsampling.

torch::Tensor s = getObservation();
s.view({1l, 3, height, width});

= torch::upsample_bilinear2d(s,

sHeight, sWidth}):

0.21 x s[0] + 0.72 *x s[1] + 0.07 * s[2]:

facebook Artificial Intelligence

PYTORCH

Native integration with PyTorch C++ AP

* Easier communication between threads/processes via Tensor.
* No extra copy when sending data from/to environments.

int
Shared memory

float
Actor » torch::Tensor [« g Trainer

facebook Artificial Intelligence

Native integration with PyTorch C++ AP

* Simultaneous network forwarding at different threads

* Python GIL becomes irrelevant.
* No need to block the environment

 good for simple environments like Go, Bridge, Hanabi and others.

Batch

O s
1

2 .

3 .

\

Game threads are blocked

Batch

-#

-ﬁ

N —
N —

Waiting until python side to reply

facebook Artificial Intelligence

0
1
2
3

\

Game threads calling PyTorch
C++ APl directly

PYTORCH

ﬁ

ﬁ

ﬁ

L earning Hand-tuned Heuristics with RL/ML

Combinatorial optimization

machine)
A ‘//lofs makespan

I

s - 3

ved [A] 3

M1 1 3 !
L] >

J 0 I time
Travel Salesman Problem Job Scheduling Vehicle Routing

yuey| |yues| [n1oY

uey

|
yuey
|

yuey| [n1eY
Y| [ney| ey

Bin Packing Protein Folding Model-Search

facebook Artificial Intelligence

Wait..What?

* These are NP-hard problems.
* No good algorithm unless P = NP

* These guarantees are worst-case ones.
* To prove a lower-bound, construct an adversarial example to fail the algorithm

* For specific distribution, there might be better heuristics.
* Human heuristics are good but may not be suitable for everything

Direct predicting combinatorial solutions

Py

Convex hull

|
_—
|

t + 1 11

1 4 2 1

X
NX
c'~>><
AX

y

Seg2seq model

facebook [O-i¥inyals. et-al, Pointer Networks, NIPS 2015]

Resource

Q
ig ‘ Cluster Job Slot 1 Job Slot 2 Job Slot 3

-]
o
@)

N
Backlog

Policy gradient

Schedule the job
to i-th slot

[H. Mao et al, Resource Management with Deep
Reinforcement Learning, ACM Workshop on Hot
Topics in Networks, 2016]

-
‘o
= |

Xinyun Chen Yuandong Tian

Local Rewriting Framework

Code: https://github.com/facebookresearch/neural-rewriter

A learned “gradient descent” that

starts from a feasible solution
iteratively converges to a good solution

ow o lear i Y

facebook Artificial Intelligence [Learning to Perform Local Rewriting for Combinatorial Optimization, X. Chen and Y. Tian, NeurlPS 2019]

https://github.com/facebookresearch/neural-rewriter

Local Rewriting Framework

St St+1

Current State

(i.e. Solution) Region-Picker Rule-Picker

S —— w; ~Ty(-|S) — U~ 1, (- |S¢ [w])

f

Ser1 = f(Sp 0, Uy) <

facebook Artificial Intelligence

Q-Actor-Critic Training

How to train two policies 1t (- |s;) and 1T, (- |S; [w,])?

Learn Q to fit cumulative rewards:
T—1 T—1

Z nyt tT St? wt7ut)) Q(st,wt;ﬁ))2

tOt’t

., (- |s¢): Q-learning with soft policy:

exp(Q(ss,wy; 0))
D 2w, EXD(Q (8¢, we; 0))

Ww(wt‘St; 9) =

Advantage:
A(st, (we, ut)) ZVt “r(st, (wisup)) — Qse,wi; 0)

1, (- |s; [w;]): Actor-Critic with learned Q:
T—1

Lu(8) = = > Alss, (Wi, ur)) log my (ug|se[wi]; ¢)

t=0

How to encode Structure Data

Child-Sum LSTM
Y1 = f(y27y37x1)

Y1
f can be very complicated:
L1 keC(5)
i; =0 (W2, + UVR; + 59,
y4 yﬁ J (J 7)
Zo A A fik=0 (W<f>x]. +UDhy + b(f)) ,

0j =0 (W(O)l'j + U(o)ilj + b(o)> y
u; = tanh (W(u)xj +U™h; + b(“)) ;

cj =15 ©uj + Z fik © ek,
keC(7)
hj = 0; © tanh(c;),

[Improved-Semantic Representation From Tree-Structured Long Short-Term Memory Networks. K. Tai et al]

Applications

Reduction

vl

/l-}.-.{
|
o~
v2 :
|
|

= argmax 1, (-, S;)

/\
vl

*

t

lw

Vi

min

Expression Simplification

Online Job Scheduling

Vehicle Routing

cial Intelligence

tifi

facebook Ar

Online Job Scheduling

3 Slow down/ B
Scheduling 1) \
Jobs (Sequential)

Graph representation

Job 3 : T=1A=
Scheduling 2
Slow
3 down
Resource 1] e 2 l |
Resource 2 s) |

et Graph representation

facebook Artificial Intelligence

Online Job Scheduling

BN EjF .
30 mEE SF Baselines:
EEm S|FS N : :
| = Deeprm . 3 Earliest Job First (EJF)
== OR-tools X Shortest Job First (SJF)
| = e Shortest First Search (SJFS)

DeepRM

oN

115.18

D
m
—

10.18

Average slowdown
= -
(9]

Offline baselines:

l Google OR-tools (OR-tools)
SJF-offline

3.94

facebook Artificial Intelligence

D: Number of resources

Online Job Scheduling: Ablation Study

The learned model can generalize to different job distributions.

B S)F BN S)F BN EjF
6 mmm SjF-offline 6 = SJF-offline . 3p/™m SFF
|1 NeuRewriter (dynamic) 0 NeuRewriter (uniform) |mmm s)F-offline
B NeuRewriter (steady) Bl NeuRewriter (non-uniform) 1 NeuRewriter (uniform) ™
5.00 5.00 25/ M NeuRewriter (non-uniform)| <

N
o

[

Average slowdown
(@]

Average slowdown
Average slowdown
=
(0

Uniform Non-uniform
Job frequency Resource distribution Job length

Dynamic Steady

Long Non-uniform

facel

Expression Simplification

<= <=
> ; Min/Max > max
max Distribution + -
v0 vO 3 3 1
Min/Max Expansion
I I
<= <= <= 1
/\
— 5 5 + 3+3 % 6 5 +
vO 3 3 3 vO 3

facebook Artificial Intelligence

Expression Simplification

Z3-simplify
Halide-rule .
: 20 .
Heuristic Search BaSE|Ines.
Z3-ctx-solver-simplify)
NeuRewriter

THT

15.82
16.71

Z3-simplify
Z3-ctx-solver-simplify
Heuristic Search
Halide rules

57.28

o
)
13.76

(S
S)
47.08
50.81

I
S
36.13

w
=

N
o
Average tree size reduction

Average expression length reduction
=
o

0 Average expression length reduction Average tree size reduction

facebook Artificial Intelligence

Expression Simplification

Transfer learning still works well. A model trained with expression length < 50 has good
performance on test set with expression length = 100,
and better than Z3

Halide-rule
Z3-ctx-solver-simplify
NeuRewriter (Train)
NeuRewriter (Train)

100

NeuRewriter (Train _)

NeuRewriter (Train _s,)

i

NeuRewriter (Train _,)

80

60 |

Average expression length reduction

Test Test _

facebook Artiticial Intelligence

Capacitated Vehicle Routing

Random Sweep

L1
25w Random CW
mEm Or-tools o °
Nazari et al. (RL beam 10) rC\|> o)) ©
< 20 AM (sampling) A& m o
: ~N o Y -

8’ I NeuRewriter a9 ¢ S
v i
L15
>
o
-
)
o101
©
| -
)
>
< 5

fa VRP20, Cap30 VRP50, Cap40 VRP100, Cap50

Coda: An End-to-End Neural Program
ecomplier

Cheng Ful, Huili Chen?l, Haolan Liul, Xinyun Chen3, Yuandong Tian?, Farinaz Koushanfar?, Jishen Zhao?

'UC San Diego, 2Facebook Al Research, 3UC Berkeley

NeurlPS 2019

Background: Decompilation

* Goal of Decompilation
* From Binary Execution to High-level program language

.

binary

source

. compilation
source

decompilation

)\ S

N

facebook Artificial Intelligence

Challenges

* Many hardware architectures (ISA): x86, MIPS, ARM

* Many Programming Languages (PL)
* Extra Human effort to extend to the new version of the hardware architectures
or programming languages

* Our goals:
* Maintain both the functionality and semantics of the binary executables
* Make the design process end-to-end (generalizable to various ISAs and PLs)

Coda Design

Leverage both syntax and dynamic information

Find good candidates

Low-level code

Sketch

Generation

End-to-End Framework

Iteratively correct the candidates
towards perfect match

Stage 1: Coda Sketch Generation

* |Is Decompilation simply a translation problem?

Encoder Decoder

Encoder Recurrent Neural Network
(RNN) m ﬂ H m 1 ﬂ
RNN

Decoder Recurrent Neural Network
(RNN)

More than a translation problem!

facebook Artificial Intelligence

Code
Sketch

Stage 1: Coda Sketch Generation

3§ c
* Encoder Rearhabiihs
e N-ary Tree Encoder to capture inter and intra LAl

dependencies of the low-level code. ’ 1 Sorers] e hO

w , P
* Opcode and its operands are encoded together w82, 20($Fp) | 5pp p2
* Different encoder is used for different instruction types

mem hl

mul $1, $1, $2 Dmem h3

sw $1, 28($fp)
Tw $1, 28($fFp) | ™™ N4

Voo WN-—-O

e mem h5
memory (mem) 1s¥t :f 22“25” art hé

o branCh (bl’) beqz $1, $BB0_3 br h7
. . j $B2 br h8

e arithmetic (art). B2 br h9

10 1w $1, 28($fp) | mem h10
11 1w $2, 20($fp) | mem hil1
12 mul $1, $1, $2 [art hi2
13 1w $2, 24 ($fp) | mem hi13
14 subu $1, $1, $2 art h14
15 5 $B3 br h15
16 sw $1, 20($fp) | mem h16

facebook Artificial Intelligence

Stage 1: Coda Sketch Generation

* Decoder
* Generate Abstract Syntax Tree (AST)
* AST can be equivalently translated into its corresponding high level Program

* Advantages:

* Prevent error propagation/ Preserve node dependency / capture PL grammar
* Boundaries are more explicit (terminal nodes)

* Using Attention Mechanism

Stage 2: Iterative Error Correction

* The sketch generated in Stage 1 may contain errors:
* mispredicted tokens, missing lines, redundant lines

Golden program Wrongly predicted Missing lines Redundant lines

If(a>c){ If(a>b){ If(a>c){ If(a>c){
a=b+c*a; a=b+c*a; a=b+c*a; a=b+c*a;
b=a-c; b=a-Db; } b = a;

} } b = a;

}

Stage 2: Iterative Error Correction

* Correct the error by iterative Error Predictor (EP)
* |terative rewriting!
* Spot errors in the generated assembly codes
* Fix errors and recompile
* Repeat 10 times

Fxperimental Setup

* Compiler configuration: Clang =00 (no code optimization)

* Benchmarks:
* Synthetic programs:
* Karel library (Karel) - only function calls
* Math library (Math) - function calls with arguments
* Normal expressions (NE) - (",&%-,<<,>>,|,%)

* Math library + Normal expressions (Math+NE) - replaces the variables in NE with a
return value of math function.

* Metrics:
* Token Accuracy
* Program Accuracy

Result - Stage 1 Performance

* Token accuracy (%) across benchmarks

Benchmarks Seq2Seq Seq2Seq+Atin Seq2AST+Attn Inst2seq+Attn Inst2AST+Attn
Karelg 51.61 97.13 99.81 08.83 99.89
Mathg 23.12 94.85 99.12 96.20 99.72

NEg 18.72 87.36 90.45 88.48 94.66

(Math+NE) g 14.14 87.86 91.98 89.67 97.90
Karel;, 33.54 94.42 08.02 08.12 98.56
Math;, 11.32 91.94 96.63 93.16 98.63

NE,. 11.02 81.80 85.92 85.97 91.92

(Math+NE) 6.09 81.56 85.32 86.16 93.20

* Highest token accuracy across all benchmarks (96.8% on average) compared to baselines.

 10.1% and 80.9% margin over a naive Seq2Seq model with and without attention.

* More tolerant to the growth of program length.

facebook Artificial Intelligence

Result — Stage 2 Performance

* Program accuracy (%)

| (1) Error Detection | (1) Befor EC After EC
BenchMarks = 10 T 24,10 [525 | 2a | 525 | 2a
Mathg 914 94.2 64.8
NEg 83.5 88.7 12.2 Baseline
(Math+NE)s | 83.6 90.1 432 Ours
Math, 87.5 91.3 51.8
NE[, 78.1 84.5 2.6
(Math+NE) , 80.2 85.3 4.9
s2s = sequence-to-sequence with attention |2a = instruction encoder to AST decoder with attention

facebook Artificial Intelligence

Summarization and Future Works

* Summary
* Gives examples of scalable RL system
* RL/ML can be used to learn heuristics for system

* Large Open Space Ahead
* ML captures statistics regularity and leads to better solutions
* Application to large-scale systems?
* Theoretical Guarantees?

facebook Artificial Intelligence

