Building Scalable Systems for Reinforcement Learning and Using Reinforcement Learning for Better Systems

Presented by Yuandong Tian

Research Scientist and Manager Facebook AI Research

Building Scalable System for RL

Crash Course of Reinforcement Learning

Reinforcement Learning works, but expensive

Challenges in large-scale RL Training System

- Trade-offs in a *heterogenous* system
	- **Different kind of objects**: Actor / Environment / Trainer / Replay buffer
	- CPUs / GPUs Allocations
	- Multi-threading versus Multiple Processes, Batching issues
	- Local versus Distributed
	- Synchronization / Asynchronization.
		- On-policy versus off-policy methods
		- Perfect synchronization might NOT give you the best performance
- Mingled Algorithm Design and System Design
	- New System design \leftrightarrow New RL algorithm

Distributed System for training RL agent

GORILLA Ape-X / R2D2 OpenAI Rapid

[Massively Parallel Methods for Deep Reinforcement Learning, AAAI 2015]

[Distributed Prioritized Experience Replay, Horgan et al, ICLR 2018] [Recurrent Experience Replay in Distributed Reinforcement Learning Kapturowski et al, ICLR 2019]

ELF: RL Framework for Game Research Yuandong Tian

facebook Artificial Intelligence

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Generate Self-play Games

Update Models

AlphaGo Zero Strength

- 3 days version
	- 4.9M Games, 1600 rollouts/move
	- 20 block ResNet
	- Defeat AlphaGo Lee.
- 40 days version
	- 29M Games, 1600 rollouts/move
	- 40 blocks ResNet.
	- Defeat AlphaGo Master by 89:11

The Mystery of AlphaZero

- Mystery
	- Is the proposed algorithm really universal?
	- Is the bot almighty? Is there any weakness in the trained bot?
- Lack of Ablation Studies
	- What factor is critical for the performance?
	- Is the algorithm robust to random initialization and changes of hyper parameters?
	- Any adversarial samples?

Impressive Results, No code, No model

ELF OpenGo

Yuandong Tian Jerry Ma* Qucheng Gong* Shubho Sengupta* Zhuoyuan Chen James Pinkerton Larry Zitnick

- System can be trained with 2000 GPUs in 2 weeks (20 block version)
- Superhuman performance against professional players and strong bots.
- Abundant ablation analysis.

We open source the code and the pre-trained model for the Go and ML community

facebook Artificial Intelligence [ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

ELF OpenGo Performance

Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

Vs strong bot (LeelaZero)

[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Distributed ELF (version 1, AlphaGoZero)

Distributed ELF (v2)

Putting AlphaGoZero and AlphaZero into the same framework

> AlphaGoZero (more synchronization) AlphaZero (less synchronization)

Server controls synchronization Server also does training.

Next Step: RL Assembly

- Backbone infrastructure for ongoing projects (Hanabi, Bridge, etc)
- Reimplementation of SoTA off-policy RL methods like Ape-X and R2D2
- Incorporate OpenGo and SoTA implementation of MCTS.
- Efficient on single machine (SoTA training FPS so far)

Open source soon

Frame Per Second (FPS) on Atari Games

ReLA: 12.5 KFPS *using* 40 CPU cores + 2 GPU (P100) on a single machine

Ape-X: 12.5 KFPS *using* 360 CPU cores + 1 GPU (distributed system)

- ReLA is GPU bound. Performance is better with more GPUs
- A few more improvements to achieve better performance when releasing.

Architecture

User Interface (API)

All objects (env, agent, replay buffer, etc) are created & configured in Python

User Interface (API)

```
class ApexAgent(torch.jit.ScriptModule):
@torch.jit.script_method
def td_err(self, obs: Dict[str, torch. Tensor], ...) -> torch. Tensor:
    online_q = self.online</u> - net (obs)online_qa = online_q.gather(1, action.unsqueeze(1)).squeeze(1)
    next_a = self.get\_greedy_act(new_t_obs)bootstrap_q = self.target_net(next_obs)bootstrap_qa = bootstrap_q.gather(1, next_a.unsqueeze(1)).squeeze(1)
    target = reward + bootstrap * (self.gamma ** self.multi_step) * bootstrap_qa
```

```
return target.detach() - online_qa
```
Model is written in **Python** with **PyTorch's TorchScript**,

and executed in **C++** with multi-threading for maximum throughput.

Native integration with PyTorch C++ API

- Simple/Intuitive manipulations of PyTorch tensors in C++
	- Same as/Similar to Python Interface
	- No extra library needed for operations like downsample/upsampling.
- $torch: : Tensor s = getObservation();$
- $s = s.view({1, 3, height, width});$
- // rescale the image
- $s =$ torch::upsample_bilinear2d(s, {sHeight, sWidth}, true); 4
- $s = s.view({3, sHeight, sWidth});$
- // convert to grey scale
- $s = 0.21 * s[0] + 0.72 * s[1] + 0.07 * s[2];$

Native integration with PyTorch C++ API

- Easier communication between threads/processes via Tensor.
	- No extra copy when sending data from/to environments.

Native integration with PyTorch C++ API

- Simultaneous network forwarding at different threads
	- Python GIL becomes irrelevant.
	- No need to block the environment
		- good for simple environments like Go, Bridge, Hanabi and others.

Learning Hand-tuned Heuristics with RL/ML

Combinatorial optimization

Travel Salesman Problem and Travel Salesman Problem and Travel Salesman Problem and Travel Australian Job Scheduling

ReLU ReLU $\begin{tabular}{|c|c|} \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \end{tabular}$ ReLU ReLU
ReLU $\frac{1}{\sqrt{114}}$ ReLU ReLL tant $\frac{1}{\sqrt{1}}$ ReLL tanh

Bin Packing **Exercise Search** Protein Folding **Model-Search** Model-Search

Wait…What?

- These are NP-hard problems.
	- No good algorithm unless $P = NP$
- These guarantees are worst-case ones.
	- To prove a lower-bound, construct an adversarial example to fail the algorithm
- For specific distribution, there might be better heuristics.
	- Human heuristics are good but may not be suitable for everything

Direct predicting combinatorial solutions

Seq2seq model *[H. Mao et al, Resource Management with Deep Reinforcement Learning,* ACM Workshop on Hot Topics in Networks, 2016*]*

[O. Vinyals. et al, Pointer Networks, NIPS 2015]

Local Rewriting Framework

Code: https://github.com/facebookresearch/neural-rewriter

A learned "gradient descent" that

starts from a feasible solution iteratively converges to a good solution

How to learn it?

facebook Artificial Intelligence [Learning to Perform Local Rewriting for Combinatorial C

 $\textcolor{blue}{S_t}$

 \overline{s}

Local Rewriting Framework

Q-Actor-Critic Training

How to train two policies $\pi_{\omega}(\cdot | s_t)$ and $\pi_{\nu}(\cdot | s_t | \omega_t])$?

Learn Q to fit cumulative rewards:

$$
L_{\omega}(\theta) = \frac{1}{T} \sum_{t=0}^{T-1} \left(\sum_{t'=t}^{T-1} \gamma^{t'-t} r(s'_t, (\omega'_t, u'_t)) - Q(s_t, \omega_t; \theta) \right)^2
$$

 $\pi_{\omega}(\cdot | s_t)$: Q-learning with soft policy:

$$
\pi_{\omega}(\omega_t|s_t; \theta) = \frac{\exp(Q(s_t, \omega_t; \theta))}{\sum_{\omega_t} \exp(Q(s_t, \omega_t; \theta))}
$$

$$
\boldsymbol{\pi}_\textit{\textbf{u}}(\cdot \, | \boldsymbol{s}_{\textit{\textbf{t}}} \, [\boldsymbol{\omega}_{\textit{\textbf{t}}}]) \text{: } \textsf{Actor-Critic with learned Q:} \\ \textit{L}_u(\phi) = -\sum_{t=0}^{T-1} \Delta(s_t, (\omega_t, u_t)) \log \pi_u(u_t|s_t[\omega_t]; \phi)
$$

$$
\frac{\text{Advantage:}}{\Delta(s_t, (\omega_t, u_t))} \equiv \sum_{t=t'}^{T-1} \gamma^{t'-t} r(s'_t, (\omega'_t, u'_t)) - Q(s_t, \omega_t; \theta)
$$

How to encode Structure Data

Child-Sum LSTM

$$
y_1 = f(y_2, y_3, x_1)
$$

f can be very complicated:

$$
\tilde{h}_j = \sum_{k \in C(j)} h_k,
$$
\n
$$
i_j = \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right),
$$
\n
$$
f_{jk} = \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right),
$$
\n
$$
o_j = \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right),
$$
\n
$$
u_j = \tanh \left(W^{(u)} x_j + U^{(u)} \tilde{h}_j + b^{(u)} \right),
$$
\n
$$
c_j = i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k,
$$
\n
$$
h_j = o_j \odot \tanh(c_j),
$$

[Improved Semantic Representation From Tree-Structured Long Short-Term Memory Networks. K. Tai et al]

Online Job Scheduling

Online Job Scheduling

Baselines:

Earliest Job First (EJF) Shortest Job First (SJF) Shortest First Search (SJFS) DeepRM

Offline baselines:

Google OR-tools (OR-tools) SJF-offline

facebook Artificial Intelligence

D: Number of resources

Online Job Scheduling: Ablation Study

The learned model can generalize to different job distributions.

Expression Simplification

Expression Simplification

Baselines:

Z3-simplify Z3-ctx-solver-simplify Heuristic Search Halide rules

Expression Simplification

Transfer learning still works well. A model trained with expression length ≤ 50 has good performance on test set with expression length ≥ 100 , and better than Z3

Capacitated Vehicle Routing

Coda: An End-to-End Neural Program Decomplier

Cheng Fu¹, Huili Chen¹, Haolan Liu¹, Xinyun Chen³, Yuandong Tian², Farinaz Koushanfar¹, Jishen Zhao¹

1UC San Diego, 2Facebook AI Research, 3UC Berkeley

NeurIPS 2019

Background: Decompilation

- Goal of Decompilation
	- From Binary Execution to High-level program language

- Many hardware architectures (ISA): x86, MIPS, ARM
- Many Programming Languages (PL)
	- Extra Human effort to extend to the new version of the hardware architectures or programming languages
- Our goals:
	- Maintain both the functionality and semantics of the binary executables
	- Make the design process end-to-end (generalizable to various ISAs and PLs)

Leverage both syntax and dynamic information

Stage 1: Coda Sketch Generation

• Is Decompilation simply a translation problem?

More than a translation problem!

Stage 1: Coda Sketch Generation

• **Encoder**

- N-ary Tree Encoder to capture **inter** and **intra** dependencies of the low-level code.
- Opcode and its operands are encoded together
- Different encoder is used for different instruction types
	- memory (mem)
	- branch (br)
	- arithmetic (art).

 $\begin{array}{c} 2 \\ 3 \\ 4 \end{array}$

 $\frac{5}{6}$

Code **Sketch**

Stage 1: Coda Sketch Generation

• **Decoder**

- Generate Abstract Syntax Tree (AST)
- AST can be equivalently translated into its corresponding high level Program
- Advantages:
	- Prevent error propagation/ Preserve node dependency / capture PL grammar
	- Boundaries are more explicit (terminal nodes)
- Using Attention Mechanism

Stage 2: Iterative Error Correction

- The sketch generated in Stage 1 may contain errors:
	- mispredicted tokens, missing lines, redundant lines

Error Correction

Stage 2: Iterative Error Correction

Error Correction

- Correct the error by iterative Error Predictor (EP)
	- Iterative rewriting!
	- Spot errors in the generated assembly codes
	- Fix errors and recompile
	- Repeat 10 times

Experimental Setup

- Compiler configuration: Clang **–O0** (no code optimization)
- Benchmarks:
	- Synthetic programs:
		- **Karel library (Karel)** only function calls
		- **Math library (Math)** function calls with arguments
		- **Normal expressions (NE)** $(\hat{A}, \hat{B}, \hat{B}, -\hat{C}, B, \hat{C}, -\hat{C}, D, \hat{C}, D, \hat{C})$
		- **Math library + Normal expressions (Math+NE)** replaces the variables in NE with a return value of math function.
- Metrics:
	- Token Accuracy
	- Program Accuracy

Result – Stage 1 Performance

• Token accuracy (%) across benchmarks

- Highest token accuracy across all benchmarks (96.8% on average) compared to baselines.
- 10.1% and 80.9% margin over a naive Seq2Seq model with and without attention.
- More tolerant to the growth of program length.

Result – Stage 2 Performance

• Program accuracy (%)

s2s = sequence-to-sequence with attention I2a = instruction encoder to AST decoder with attention

Summarization and Future Works

• Summary

- Gives examples of scalable RL system
- RL/ML can be used to learn heuristics for system
- Large Open Space Ahead
	- ML captures statistics regularity and leads to better solutions
	- Application to large-scale systems?
	- Theoretical Guarantees?

Thanks!