
Building Scalable Systems for Reinforcement
Learning and Using Reinforcement Learning

for Better Systems

Presented by Yuandong Tian

Research Scientist and Manager
Facebook AI Research

Overview

Building Scalable System for
Reinforcement Learning (RL)

Learn Hand-tuned Heuristics
by RL / ML

Building Scalable System for RL

Crash Course of Reinforcement Learning

Action 𝑎"State 𝑠"
Reward 𝑟"

Agent

Environment
𝑠"%&

𝑟"%&

Reinforcement Learning works, but expensive

Year Projects Human Data Training Resource Training time
2016 DeepMind’s AlphaGo Yes ~50 GPUs + ? CPUs ~1 week

2017 DeepMind’s AlphaGo Zero
(20 blocks) No ~2000 TPUs 3 days

2017 DeepMind’s AlphaZero (20 blocks) No ~5000 TPUs 8 hours
2018 OpenAI Five No 128,000 CPUs + 256 GPUs Several months
2019 DeepMind’s AlphaStar Yes 16,000 CPUs + 3072 TPUv3 cores 44 days

Challenges in large-scale RL Training System

• Trade-offs in a heterogenous system
• Different kind of objects: Actor / Environment / Trainer / Replay buffer
• CPUs / GPUs Allocations
• Multi-threading versus Multiple Processes, Batching issues
• Local versus Distributed
• Synchronization / Asynchronization.

• On-policy versus off-policy methods
• Perfect synchronization might NOT give you the best performance

• Mingled Algorithm Design and System Design
• New System design çè New RL algorithm

Distributed System for training RL agent

GORILLA Ape-X / R2D2 OpenAI Rapid

[Distributed Prioritized Experience Replay, Horgan et al, ICLR 2018]
[Recurrent Experience Replay in Distributed Reinforcement Learning

Kapturowski et al, ICLR 2019]

[Massively Parallel Methods for Deep
Reinforcement Learning, AAAI 2015]

Game
Threads

0

1

2

3

4

5
6
7

Batch BatchBatch Batch Batch

Python

C++

ELF: RL Framework for Game Research

Larry Zitnick

Qucheng Gong Wendy Shang

Yuxin Wu

Yuandong Tian

[ELF: Extensive, Lightweight and Flexible Framework for
Game Research, Tian et al, NeurIPS 2019]

AlphaGoZero / AlphaZero

Update
Models

Generate
Training data

Self-Replays

Without human knowledge

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Generate Self-play Games

Monte Carlo Tree Search
with current model

Training
samples
for

Update Models

Input features (19x19x17):

Player situation
at time 0

Player situation at t=-7Opponent situation
at time 0

Color to play

Conv ReLUBN Conv ReLUBN

Objective:

AlphaGo Zero Strength

• 3 days version
• 4.9M Games, 1600 rollouts/move
• 20 block ResNet
• Defeat AlphaGo Lee.

• 40 days version
• 29M Games, 1600 rollouts/move
• 40 blocks ResNet.
• Defeat AlphaGo Master by 89:11

The Mystery of AlphaZero

• Mystery
• Is the proposed algorithm really universal?
• Is the bot almighty? Is there any weakness in the trained bot?

• Lack of Ablation Studies
• What factor is critical for the performance?
• Is the algorithm robust to random initialization and changes of hyper

parameters?
• Any adversarial samples?

Impressive Results, No code, No model

ELF OpenGo
• System can be trained with 2000 GPUs in 2 weeks (20 block version)
• Superhuman performance against professional players and strong bots.
• Abundant ablation analysis.

We open source the code and the pre-trained model for the Go and ML community

[ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

Larry ZitnickQucheng Gong*Yuandong Tian Jerry Ma* Shubho Sengupta* Zhuoyuan Chen James Pinkerton

ELF OpenGo Performance

20-0Name (rank) ELO (world rank) Result

Kim Ji-seok 3590 (#3) 5-0

Shin Jin-seo 3570 (#5) 5-0

Park Yeonghun 3481 (#23) 5-0

Choi Cheolhan 3466 (#30) 5-0

Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players

Vs top professional players

Vs strong bot (LeelaZero)
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Vs professional players
Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

http://zero.sjeng.org/networks/158603eb61a1e5e9dcd1aee157d813063292ae68fbc8fcd24502ae7daf4d7948.gz

Distributed ELF (version 1, AlphaGoZero)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Selfplay data

Current best model Evaluation
Server

Update best model
and next candidateCurrent trained model

Win rate > 55%

Distributed ELF (version 1)

Training
procedure

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Open a port
Receive selfplay data via ZeroMQ

Current trained model

8 GPUs

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Pick the best model and keep selfplaying

Current best model

300-2k GPUs

Each selfplay client
batches 32 parallel games
in a batch size of 128

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Update best model
and next candidate

Win rate > 55%

No GPU needed

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Send the current model
pairs to evaluate

100 GPUs

Each evaluation client
batches 2 parallel games

Distributed ELF (v2)

Server

Evaluate/Selfplay

Training

Send request
(game params)

Receive
experiences

Client

Client

Client Client Client

Client

Client

AlphaGoZero (more synchronization)
AlphaZero (less synchronization)

Putting AlphaGoZero and AlphaZero
into the same framework

Server controls synchronization
Server also does training.

Next Step: RL Assembly

• Backbone infrastructure for ongoing projects (Hanabi, Bridge, etc)

• Reimplementation of SoTA off-policy RL methods like Ape-X and R2D2

• Incorporate OpenGo and SoTA implementation of MCTS.

• Efficient on single machine (SoTA training FPS so far)

Open source soon

Frame Per Second (FPS) on Atari Games

ReLA: 12.5 KFPS
using 40 CPU cores + 2 GPU (P100) on a single machine

Ape-X: 12.5 KFPS
using 360 CPU cores + 1 GPU (distributed system)

• ReLA is GPU bound. Performance is better with more GPUs

• A few more improvements to achieve better performance when releasing.

ThreadLoopThreadLoopThreadLoop

Architecture

ThreadLoop

Actor

Batch Obs

Env

Env

Env

Env

Env

Env

(Prioritized) Replay
Buffer

Data

TrainerUpdate Actor Model

Batch Action

Mini-Batches
&

Priority

User Interface (API)

All objects (env, agent, replay buffer, etc) are created & configured in Python

User Interface (API)

Model is written in Python with PyTorch’s TorchScript,
and executed in C++ with multi-threading for maximum throughput.

Native integration with PyTorch C++ API

• Simple/Intuitive manipulations of PyTorch tensors in C++
• Same as/Similar to Python Interface
• No extra library needed for operations like downsample/upsampling.

Native integration with PyTorch C++ API

• Easier communication between threads/processes via Tensor.
• No extra copy when sending data from/to environments.

Actor

torch::TensorActor

Actor

Trainer

Shared memory
int

float

char

• Simultaneous network forwarding at different threads
• Python GIL becomes irrelevant.
• No need to block the environment

• good for simple environments like Go, Bridge, Hanabi and others.

Native integration with PyTorch C++ API

0

1

2

3

Batch Batch
0

1

2

3

Game threads are blocked
Waiting until python side to reply

Game threads calling PyTorch
C++ API directly

Learning Hand-tuned Heuristics with RL/ML

Combinatorial optimization

Travel Salesman Problem Job Scheduling Vehicle Routing

Bin Packing Protein Folding Model-Search

Wait…What?

• These are NP-hard problems.
• No good algorithm unless P = NP

• These guarantees are worst-case ones.
• To prove a lower-bound, construct an adversarial example to fail the algorithm

• For specific distribution, there might be better heuristics.
• Human heuristics are good but may not be suitable for everything

Direct predicting combinatorial solutions

[O. Vinyals. et al, Pointer Networks, NIPS 2015]

Convex hull

Seq2seq model
[H. Mao et al, Resource Management with Deep
Reinforcement Learning, ACM Workshop on Hot
Topics in Networks, 2016]

Schedule the job
to i-th slot

Policy gradient

Local Rewriting Framework

A learned “gradient descent” that

starts from a feasible solution
iteratively converges to a good solution

𝒔𝒕

𝒔𝒕%𝟏 𝒔𝒕%𝟐

𝒔𝒕%𝟑
𝒔𝒕%𝟒

How to learn it?

Xinyun Chen Yuandong Tian

[Learning to Perform Local Rewriting for Combinatorial Optimization, X. Chen and Y. Tian, NeurIPS 2019]

Code: https://github.com/facebookresearch/neural-rewriter

https://github.com/facebookresearch/neural-rewriter

Local Rewriting Framework

𝒔𝒕 𝝎𝒕 ∼ 𝝅𝝎 ⋅ |𝒔𝒕 𝒖𝒕 ∼ 𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕]

𝒔𝒕%𝟏 = 𝒇(𝒔𝒕, 𝝎𝒕, 𝒖𝒕)

Current State
(i.e. Solution) Region-Picker Rule-Picker

𝒔𝒕

𝝎𝒕

𝒔𝒕[𝝎𝒕]

𝒖𝒕

𝒔𝒕%𝟏

Q-Actor-Critic Training
How to train two policies 𝝅𝝎 ⋅ |𝒔𝒕 and 𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕] ?

𝝅𝝎 ⋅ |𝒔𝒕 : Q-learning with soft policy:

𝝅𝒖 ⋅ |𝒔𝒕 [𝝎𝒕] : Actor-Critic with learned Q:

Learn Q to fit cumulative rewards:

Advantage:

How to encode Structure Data
Child-Sum LSTM

f can be very complicated:

[Improved Semantic Representation From Tree-Structured Long Short-Term Memory Networks. K. Tai et al]

Applications

min -

v0 v2 v1 v1

𝒔𝒕

𝝎𝒕
∗ = argmax 𝝅𝝎 ⋅, 𝒔𝒕

Constant
Reduction

0
𝒖@

≤(b)(a)
0

1

5

3

42

𝝎𝒕
∗

𝒔𝒕

𝒖@

4

3

swap

Expression SimplificationOnline Job Scheduling

Vehicle Routing

Online Job Scheduling

Scheduling 1
(Sequential)

Job 1

Job 2

Job 3

Jobs

Resource 1 0

1

2

3

1 32 4 5 6

1

2

3

time

Slow
down

Graph representation

0

1

2

3

1 32 4 5 6 time

Slow down

1

2

3

Graph representation

Scheduling 2

𝑇 = 2, 𝐴 = 1

𝑇 = 3, 𝐴 = 2

𝑇 = 1, 𝐴 = 3

Resource 2

Online Job Scheduling

Earliest Job First (EJF)
Shortest Job First (SJF)
Shortest First Search (SJFS)
DeepRM

Google OR-tools (OR-tools)
SJF-offline

Baselines:

Offline baselines:

D: Number of resources

Online Job Scheduling: Ablation Study
The learned model can generalize to different job distributions.

Expression Simplification

Expression Simplification

Z3-simplify
Z3-ctx-solver-simplify
Heuristic Search
Halide rules

Baselines:

Expression Simplification
Transfer learning still works well. A model trained with expression length ≤ 50 has good

performance on test set with expression length ≥ 100,
and better than Z3

Capacitated Vehicle Routing

Coda: An End-to-End Neural Program
Decomplier

Cheng Fu1, Huili Chen1, Haolan Liu1, Xinyun Chen3, Yuandong Tian2, Farinaz Koushanfar1, Jishen Zhao1

1UC San Diego, 2Facebook AI Research, 3UC Berkeley

NeurIPS 2019

Background: Decompilation

• Goal of Decompilation
• From Binary Execution to High-level program language

Challenges

• Many hardware architectures (ISA): x86, MIPS, ARM

• Many Programming Languages (PL)
• Extra Human effort to extend to the new version of the hardware architectures

or programming languages

• Our goals:
• Maintain both the functionality and semantics of the binary executables
• Make the design process end-to-end (generalizable to various ISAs and PLs)

Coda Design

Stage 2

Error
Correction

Stage 1

Code
Sketch
Generation

End-to-End Framework

Low-level code High level program

Find good candidates
Iteratively correct the candidates
towards perfect match

Leverage both syntax and dynamic information

Stage 1: Coda Sketch Generation

• Is Decompilation simply a translation problem?

Encoder Recurrent Neural Network
(RNN)

Decoder Recurrent Neural Network
(RNN)

More than a translation problem!

Encoder Decoder

Stage 1: Coda Sketch Generation

• Encoder
• N-ary Tree Encoder to capture inter and intra
dependencies of the low-level code.
• Opcode and its operands are encoded together
• Different encoder is used for different instruction types

• memory (mem)
• branch (br)
• arithmetic (art).

Stage 1: Coda Sketch Generation

• Decoder
• Generate Abstract Syntax Tree (AST)
• AST can be equivalently translated into its corresponding high level Program
• Advantages:

• Prevent error propagation/ Preserve node dependency / capture PL grammar
• Boundaries are more explicit (terminal nodes)

• Using Attention Mechanism

Stage 2: Iterative Error Correction

• The sketch generated in Stage 1 may contain errors:
• mispredicted tokens, missing lines, redundant lines

Golden program

If(a > c) {
a = b + c * a;
b = a – c;

}

Wrongly predicted

If(a > b) {
a = b + c * a;
b = a - b;

}

Missing lines

If(a > c) {
a = b + c * a;

}

Redundant lines

If(a > c) {
a = b + c * a;
b = a;
b = a;

}

• Correct the error by iterative Error Predictor (EP)
• Iterative rewriting!
• Spot errors in the generated assembly codes
• Fix errors and recompile
• Repeat 10 times

Stage 2: Iterative Error Correction

Experimental Setup

• Compiler configuration: Clang –O0 (no code optimization)
• Benchmarks:

• Synthetic programs:
• Karel library (Karel) – only function calls
• Math library (Math) – function calls with arguments
• Normal expressions (NE) – (^,&,*,-,<<,>>,|,% ….)
• Math library + Normal expressions (Math+NE) – replaces the variables in NE with a

return value of math function.

• Metrics:
• Token Accuracy
• Program Accuracy

Result – Stage 1 Performance

• Token accuracy (%) across benchmarks

• Highest token accuracy across all benchmarks (96.8% on average) compared to baselines.
• 10.1% and 80.9% margin over a naive Seq2Seq model with and without attention.
• More tolerant to the growth of program length.

Result – Stage 2 Performance

s2s = sequence-to-sequence with attention I2a = instruction encoder to AST decoder with attention

Baseline

Ours

• Program accuracy (%)

Summarization and Future Works

• Summary
• Gives examples of scalable RL system
• RL/ML can be used to learn heuristics for system

• Large Open Space Ahead
• ML captures statistics regularity and leads to better solutions
• Application to large-scale systems?
• Theoretical Guarantees?

Thanks!

